文章快速检索     高级检索
  华东师范大学学报(自然科学版)  2017 Issue (4): 52-63, 70  DOI: 10.3969/j.issn.1000-5641.2017.04.005
0

引用本文  

阮玉盛. Dougall 5F4求和公式的一些应用[J]. 华东师范大学学报(自然科学版), 2017, (4): 52-63, 70. DOI: 10.3969/j.issn.1000-5641.2017.04.005.
NGUYEN Ngoc Thinh. Some applications of Dougall's 5F4 summation[J]. Journal of East China Normal University (Natural Science), 2017, (4): 52-63, 70. DOI: 10.3969/j.issn.1000-5641.2017.04.005.

基金项目

国家自然科学基金(11571114)

作者简介

阮玉盛, 男, 博士研究生, 研究方向为特殊函数与数论.E-mail:thinhnn02@yahoo.com

文章历史

收稿日期:2016-10-19
Dougall 5F4求和公式的一些应用
阮玉盛     
华东师范大学 数学系, 上海 200241
摘要:Dougall 5F4求和公式是特殊函数论中一个重要的级数求和公式,其在不同领域中的应用已被人们广泛讨论.本文以该公式为基础导出了一些新的求和公式,并利用这些公式给出了一系列新的关于1/π和1/π2的Ramanujan型级数公式.
关键词伽马函数    超几何函数    Dougall 5F4求和    Ramanujan型级数    
Some applications of Dougall's 5F4 summation
NGUYEN Ngoc Thinh    
Department of Mathematics, East China Normal University, Shanghai 200241, China
Abstract: Dougall's 5F4 summation formula plays an important role in the theory of special functions, and its various applications have been widely discussed. Using Dougall's 5F4 summation formula, we derive some new summation formulas, from which new Ramanujan type series for 1/π and 1/π2 are obtained.
Key words: gamma function    hypergeometric functions    Dougall's 5F4 summation    Ramanujan type series    
0 引言

在文献[1]中, Ramanujan共提出了17个关于$1/\pi$的级数. 1987年之前, 仍然没有数学家可以真正处理这些级数. Borwein兄弟在文献[2]中第一次给出了Ramanujan级数的严格证明并得到了许多新的关于$1/\pi$的Ramanujan型级数. Chudnovsky兄弟则在文献[3]中给出了这些级数的一些拓展公式.

目前, 有关$1/\pi$的一些新的Ramanujan型级数已经被许多数学家研究并取得了大量的成果, 具体可参考文献[4-19].在文献[20]的基础上, 本文通过对Dougall $_5F_4$求和公式中所包含的参数进行求导运算来得到一些新的有关$1/\pi$的Ramanujan型级数.同时, 文章中还得到了许多新的关于其他常数的Ramanujan型级数.

本文需要下列有关特殊函数的一些基本概念.

定义0.1[21] 对任意的复数$z\not= 0, -1, -2, \cdots$, 伽马函数$\Gamma(z)$可以定义为

$ \Gamma (z) = \mathop {\lim }\limits_{k \to \infty } \frac{{k!{k^{z-1}}}}{{{{(z)}_k}}}, $ (1)

其中$(z)_k$为Pochhammer符号.

定义0.2 若$z$为复数且$n$为自然数, 则通常的Pochhammer符号被定义为

$ {(z)_n} = z(z + 1)(z + 2) \cdots (z + n-1), \quad {(z)_0} = 1. $

一般地, 对于任意的复数$\alpha$, 可定义Pochhammer符号$(z)_{\alpha}$

$ {(z)_\alpha } = \frac{{\Gamma (z + \alpha )}}{{\Gamma (z)}}. $ (2)

命题0.1[21]

$ \frac{1}{{\Gamma (z)}} = z{{\rm{e}}^{\gamma z}}\prod\limits_{i = 1}^\infty \{ (1 + \frac{z}{n}){{\rm{e}}^{-z/n}}\} . $ (3)

式(3) 中, $\gamma$代表欧拉常数, 其具体定义为

$ \gamma = \mathop {\lim }\limits_{n \to \infty } (\sum\limits_{k = 1}^n {\frac{1}{k}}-\ln n). $

命题0.2[21] (欧拉反射公式)

$ \Gamma (z)\Gamma (1-z) = \frac{\pi }{{\sin \pi z}}. $ (4)

定义0.3 双伽马函数$\psi(z)$定义为

$ \psi (z) = \frac{{\Gamma '(z)}}{{\Gamma (z)}}. $ (5)

命题0.3[21] 双伽马函数$\psi(z)$有如下性质.

$ \psi (z + n) = \frac{1}{z} + \frac{1}{{z + 1}} + \cdots + \frac{1}{{z + n-1}} + \psi (z), \quad n = 1, 2, 3, \cdots, $ (6)
$ \psi (\frac{p}{q}) =-\gamma-\frac{\pi }{2}\cot \frac{{\pi p}}{q}-\ln q + 2\sum\limits_{n = 1}^{\left\lfloor {q/2} \right\rfloor } {\cos } \frac{{2\pi np}}{q}\ln (2\sin \frac{{n\pi }}{q}), $ (7)

其中$0 < p < q$; $\sum'$表示当$q$是偶数时, 指标为$n=q/2$的项要除以2.这里, $\lfloor q/2\rfloor$表示不大于$q/2$的最大整数.

公式(7) 也可以表达为

$ \psi (\frac{p}{q}) =-\gamma-\frac{\pi }{2}\cot \frac{{\pi p}}{q}-\ln q + \sum\limits_{n = 1}^{q - 1} {\cos } \frac{{2\pi np}}{q}\ln (2\sin \frac{{n\pi }}{q}). $ (8)

命题0.4[20] (Dougall $_5F_4$公式)若$\mathfrak{R}(a+b+c+d+1)>0$, 则

$ \begin{array}{l} \sum\limits_{n = 0}^\infty {\frac{{(a + 2n)\Gamma (a + n)\Gamma (n-b)\Gamma (n-c)\Gamma (n-d)}}{{n!\Gamma (a + b + n + 1)\Gamma (a + c + n + 1)\Gamma (a + d + n + 1)}}} \\ = \frac{{\Gamma ( - b)\Gamma ( - c)\Gamma ( - d)\Gamma (a + b + c + d + 1)}}{{\Gamma (a + b + c + 1)\Gamma (a + b + d + 1)\Gamma (a + c + d + 1)}}. \end{array} $ (9)

命题0.5[20] 若$\mathfrak{R}(a+b+c+d+\alpha-\beta-\gamma-\delta+1)>0$, 则

$ \begin{array}{l} \sum\limits_{n = 0}^\infty {\frac{{(\alpha + a + 2n){{(\alpha )}_{a + n}}{{(\beta )}_{n-b}}{{(\gamma )}_{n-c}}{{(\delta )}_{n-d}}}}{{n!{{(1 + \alpha - \beta )}_{a + b + n}}{{(1 + \alpha - \gamma )}_{a + c + n}}{{(1 + \alpha - \delta )}_{a + d + n}}}}} \\ = \frac{{\Gamma (1 + \alpha - \beta )\Gamma (1 + \alpha - \gamma )\Gamma (1 + \alpha - \delta )\Gamma (2 + \alpha - \beta - \gamma - \delta )}}{{\Gamma (\alpha )\Gamma (1 + \alpha - \beta - \gamma )\Gamma (1 + \alpha - \beta - \delta )\Gamma (1 + \alpha - \gamma - \delta )}}\\ \times \frac{{{{(\beta )}_{ - b}}{{(\gamma )}_{ - c}}{{(\delta )}_{ - d}}{{(2 + \alpha - \beta - \gamma - \delta )}_{a + b + c + d - 1}}}}{{{{(1 + \alpha - \beta - \gamma )}_{a + b + c}}{{(1 + \alpha - \beta - \delta )}_{a + b + d}}{{(1 + \alpha - \gamma - \delta )}_{a + c + d}}}}. \end{array} $ (10)
1 Dougall $_5F_4$求和公式的推广以及$1/\pi$的Ramanujan型级数

引理1.1 对于任意的复数$x, y$, 我们有

$ \mathop {\lim }\limits_{n \to \infty } \frac{{\Gamma (n + x)}}{{\Gamma (n + y)}}{n^{y-x}} = 1. $

证 明 直接利用式(2) 和定义0.1便可证明该引理.

定理1.1 若${\mathfrak{R}}(a+b+c+d+1)>0$, 则

$ \begin{array}{l} \frac{{{{\rm{d}}^k}}}{{{\rm{d}}{a^k}}}[\sum\limits_{n = 0}^\infty {\frac{{(a + 2n)\Gamma (a + n)\Gamma (n-b)\Gamma (n-c)\Gamma (n-d)}}{{n!\Gamma (a + b + n + 1)\Gamma (a + c + n + 1)\Gamma (a + d + n + 1)}}}]\\ = \sum\limits_{n = 0}^\infty {\frac{{{{\rm{d}}^k}}}{{{\rm{d}}{a^k}}}} [\frac{{(a + 2n)\Gamma (a + n)\Gamma (n-b)\Gamma (n-c)\Gamma (n-d)}}{{n!\Gamma (a + b + n + 1)\Gamma (a + c + n + 1)\Gamma (a + d + n + 1)}}]. \end{array} $ (11)

证 明 显然, 上式左边被求导的级数是绝对收敛的.接下来我们需要证明此级数也是一致收敛的.记

$ {u_n}(a, b, c, d) = \frac{{(a + 2n)\Gamma (a + n)\Gamma (n-b)\Gamma (n-c)\Gamma (n-d)}}{{n!\Gamma (a + b + n + 1)\Gamma (a + c + n + 1)\Gamma (a + d + n + 1)}}. $

利用引理1.1, 我们有

$ \begin{array}{l} \mathop {\lim }\limits_{n \to \infty } \frac{{\Gamma (n + a)}}{{\Gamma (n + a + b + 1)}}{n^{b + 1}} = 1;\quad \mathop {\lim }\limits_{n \to \infty } \frac{{\Gamma (n-c)}}{{\Gamma (n + c + a + 1)}}{n^{a + 2c + 1}} = 1;\\ \mathop {\lim }\limits_{n \to \infty } \frac{{\Gamma (n-d)}}{{\Gamma (n + d + a + 1)}}{n^{a + 2d + 1}} = 1;\quad \mathop {\lim }\limits_{n \to \infty } \frac{{\Gamma (n-b)}}{{\Gamma (n + 1)}}{n^{b + 1}} = 1. \end{array} $

因此, 当$n\rightarrow\infty$时,

$ {u_n}(a,b,c,d) \sim \frac{{a + 2n}}{{n \cdot {n^b}}} \cdot \frac{1}{{{n^{b + 1}}}} \cdot \frac{1}{{{n^{a + 2c + 1}}}} \cdot \frac{1}{{{n^{a + 2d + 1}}}} \sim \frac{2}{{{n^{2a + 2b + 2c + 2d + 3}}}}. $

又由于${\mathfrak{R}}(2a+2b+2c+2d+3)>1$, 故此级数一致收敛.

定义1.1 设$a, b, c, d$为复数, $n$为整数.我们定义

$ \begin{array}{l} H(a, b, c, d, n): = [\frac{1}{{a + 2n}} + \psi (a + n)]\\ - [\psi (a + b + n + 1) + \psi (a + c + n + 1) + \psi (a + d + n + 1)], \end{array} $

其中$\psi$是由式(5) 定义的双伽马函数.

定理1.2 若${\mathfrak{R}}(a+b+c+d+1)>0$, 则

$ \begin{array}{l} \sum\limits_{n = 0}^\infty H (a, b, c, d, n)\frac{{(a + 2n)\Gamma (a + n)\Gamma (n- b)\Gamma (n- c)\Gamma (n- d)}}{{n!\Gamma (a + b + n + 1)\Gamma (a + c + n + 1)\Gamma (a + d + n + 1)}}\\ = \frac{{\Gamma ( - b)\Gamma ( - c)\Gamma ( - d)\Gamma (a + b + c + d + 1)}}{{\Gamma (a + b + c + 1)\Gamma (a + b + d + 1)\Gamma (a + c + d + 1)}}\{ \psi (a + b + c + d + 1)\\ - [\psi (a + b + c + 1) + \psi (a + b + d + 1) + \psi (a + c + d + 1)]\} . \end{array} $ (12)

证 明 首先, 我们有

$ \frac{{\rm{d}}}{{{\rm{d}}a}}[\frac{{(a + 2n)\Gamma (a + n)}}{{\Gamma (a + b + n + 1)\Gamma (a + c + n + 1)\Gamma (a + d + n + 1)}}] = \frac{{{N_1}(a)}}{{{D_1}(a)}}, $

其中

$ \begin{array}{l} {N_1}(a) = [\Gamma (a + n) + (a + 2n)\Gamma '(a + n)]\Gamma (a + b + n + 1)\Gamma (a + c + n + 1)\Gamma (a + d + n + 1)\\ - (a + 2n)\Gamma (a + n)[\Gamma '(a + b + n + 1)\Gamma (a + c + n + 1)\Gamma (a + d + n + 1)\\ + \Gamma (a + b + n + 1)\Gamma '(a + c + n + 1)\Gamma (a + d + n + 1)\\ + \Gamma (a + b + n + 1)\Gamma (a + c + n + 1)\Gamma '(a + d + n + 1)], \end{array} $

$ {D_1}(a) = {[\Gamma (a + b + n + 1)\Gamma (a + c + n + 1)\Gamma (a + d + n + 1)]^2}. $

因此

$ \begin{array}{l} \frac{{\rm{d}}}{{{\rm{d}}a}}[\frac{{(a + 2n)\Gamma (a + n)\Gamma (n-b)\Gamma (n-c)\Gamma (n-d)}}{{n!\Gamma (a + b + n + 1)\Gamma (a + c + n + 1)\Gamma (a + d + n + 1)}}]\\ = \frac{{[\frac{1}{{a + 2n}} + \psi (a + n)](a + 2n)\Gamma (a + n)\Gamma (n - b)\Gamma (n - c)\Gamma (n - d)}}{{n!\Gamma (a + b + n + 1)\Gamma (a + c + n + 1)\Gamma (a + d + n + 1)}}\\ - \frac{{(a + 2n)\Gamma (a + n)\Gamma (n - b)\Gamma (n - c)\Gamma (n - d)}}{{n!\Gamma (a + b + n + 1)\Gamma (a + c + n + 1)\Gamma (a + d + n + 1)}}\\ \times [\psi (a + b + n + 1) + \psi (a + c + n + 1) + \psi (a + d + n + 1)] = \\ H(a, b, c, d, n)\frac{{(a + 2n)\Gamma (a + n)\Gamma (n -b)\Gamma (n -c)\Gamma (n -d)}}{{n!\Gamma (a + b + n + 1)\Gamma (a + c + n + 1)\Gamma (a + d + n + 1)}}. \end{array} $ (13)

另一方面

$ \frac{{\rm{d}}}{{{\rm{d}}a}}[\frac{{\Gamma (-b)\Gamma (-c)\Gamma (-d)\Gamma (a + b + c + d + 1)}}{{\Gamma (a + b + c + 1)\Gamma (a + b + d + 1)\Gamma (a + c + d + 1)}}] = \frac{{{N_2}(a)}}{{{D_2}(a)}}, $

其中

$ \begin{array}{l} {N_2}(a) = \Gamma (- b)\Gamma (- c)\Gamma (- d)\Gamma '(a + b + c + d + 1)\\ \Gamma (a + b + c + 1)\Gamma (a + b + d + 1)\Gamma (a + c + d + 1)\\ - \Gamma ( - b)\Gamma ( - c)\Gamma ( - d)\Gamma (a + b + c + d + 1)\\ [\Gamma '(a + b + c + 1)\Gamma (a + b + d + 1)\Gamma (a + c + d + 1)\\ + \Gamma (a + b + c + 1)\Gamma '(a + b + d + 1)\Gamma (a + c + d + 1)\\ + \Gamma (a + b + c + 1)\Gamma (a + b + d + 1)\Gamma '(a + c + d + 1)], \end{array} $

$ {D_2}(a) = {[\Gamma (a + b + c + 1)\Gamma (a + b + d + 1)\Gamma (a + c + d + 1)]^2}. $

根据$N_2(a)$$D_2(a)$的表达式, 可进一步得到

$ \begin{array}{l} \frac{{{N_2}(a)}}{{{D_2}(a)}} = \frac{{\Gamma (- b)\Gamma (- c)\Gamma (- d)\Gamma (a + b + c + d + 1)}}{{\Gamma (a + b + c + 1)\Gamma (a + b + d + 1)\Gamma (a + c + d + 1)}}\{ \psi (a + b + c + d + 1)\\ - [\psi (a + b + c + 1) + \psi (a + b + d + 1) + \psi (a + c + d + 1)]\} . \end{array} $ (14)

最终, 结合公式(9)、(11)、(13) 以及(14), 我们完成了公式(12) 的证明.

定理1.3 若${\mathfrak{R}}(a+b+c+d+\alpha-\beta-\gamma-\delta+1)>0$, 则

$ \begin{array}{l} \sum\limits_{n = 0}^\infty H (a + \alpha, b- \beta, c- \gamma, d- \delta, n)\frac{{(a + 2n + \alpha ){{(\alpha )}_{a + n}}{{(\beta )}_{n - b}}{{(\gamma )}_{n - c}}{{(\delta )}_{n - d}}}}{{n!{{(1 + \alpha - \beta )}_{a + b + n}}{{(1 + \alpha - \gamma )}_{a + c + n}}{{(1 + \alpha - \delta )}_{a + d + n}}}}\\ = \frac{{\Gamma (1 + \alpha - \beta )\Gamma (1 + \alpha - \gamma )\Gamma (1 + \alpha - \delta )\Gamma (2 + \alpha - \beta - \gamma - \delta )}}{{\Gamma (\alpha )\Gamma (1 + \alpha - \beta - \gamma )\Gamma (1 + \alpha - \beta - \delta )\Gamma (1 + \alpha - \gamma - \delta )}}\\ \times \frac{{{{(\beta )}_{ - b}}{{(\gamma )}_{ - c}}{{(\delta )}_{ - d}}{{(2 + \alpha - \beta - \gamma - \delta )}_{a + b + c + d - 1}}}}{{{{(1 + \alpha - \beta - \gamma )}_{a + b + c}}{{(1 + \alpha - \beta - \delta )}_{a + b + d}}{{(1 + \alpha - \gamma - \delta )}_{a + c + d}}}}\\ \times \{ \psi (a + b + c + d + 1 + \alpha - \beta - \gamma - \delta ) - [\psi (a + b + c + 1 + \alpha-\beta-\gamma )\\ + \psi (a + b + d + 1 + \alpha-\beta - \delta ) + \psi (a + c + d + 1 + \alpha - \gamma - \delta )]\} . \end{array} $ (15)

证 明 利用公式(2), 并将式(12) 中的$(a, b, c, d)$替换为$(a+\alpha, b-\beta, c-\gamma, d-\delta)$, 就完成了定理的证明.

定理1.4 若${\mathfrak{R}}(a+b+c+d)>0$, 则

$ \begin{array}{l} \sum\limits_{n = 0}^\infty H (a + \frac{1}{2}, b- \frac{1}{2}, c- \frac{1}{3}, d- \frac{2}{3}, n)\frac{{(4n + 2a + 1){{(\frac{1}{2})}_{n + a}}{{(\frac{1}{2})}_{n - b}}{{(\frac{1}{3})}_{n - c}}{{(\frac{2}{3})}_{n - d}}}}{{n!{{(1)}_{a + b + n}}{{(\frac{7}{6})}_{a + c + n}}{{(\frac{5}{6})}_{a + d + n}}}}\\ = \frac{{{{(\frac{1}{2})}_{ - b}}{{(\frac{1}{3})}_{ - c}}{{(\frac{2}{3})}_{ - d}}{{(1)}_{a + b + c + d - 1}}}}{{\pi \sqrt 3 {{(\frac{2}{3})}_{a + b + c}}{{(\frac{1}{3})}_{a + b + d}}{{(\frac{1}{2})}_{a + c + d}}}}\{ \psi (a + b + c + d) - [\psi (a + b + c + \frac{2}{3}){\mkern 1mu} \\ + \psi (a + b + d + \frac{1}{3}) + \psi (a + c + d + \frac{1}{2})]\} . \end{array} $ (16)

证 明 在式(15) 中令$(\alpha, \beta, \gamma, \delta)=(\frac{1}{2}, \frac{1}{2}, \frac{1}{3}, \frac{2}{3})$可得

$ \begin{array}{l} \sum\limits_{n = 0}^\infty H (a + \frac{1}{2}, b- \frac{1}{2}, c- \frac{1}{3}, d- \frac{2}{3}, n)\frac{{(4n + 2a + 1){{(\frac{1}{2})}_{n + a}}{{(\frac{1}{2})}_{n - b}}{{(\frac{1}{3})}_{n - c}}{{(\frac{2}{3})}_{n - d}}}}{{n!{{(1)}_{a + b + n}}{{(\frac{7}{6})}_{a + c + n}}{{(\frac{5}{6})}_{a + d + n}}}}\\ = \frac{{\Gamma (\frac{7}{6})\Gamma (\frac{5}{6}){{(\frac{1}{2})}_{ - b}}{{(\frac{1}{3})}_{ - c}}{{(\frac{2}{3})}_{ - d}}{{(1)}_{a + b + c + d - 1}}}}{{{\Gamma ^2}(\frac{1}{2})\Gamma (\frac{2}{3})\Gamma (\frac{1}{3}){{(\frac{2}{3})}_{a + b + c}}{{(\frac{1}{3})}_{a + b + d}}{{(\frac{1}{2})}_{a + c + d}}}}\{ \psi (a + b + c + d)\\ - [\psi (a + b + c + \frac{2}{3}) + \psi (a + b + d + \frac{1}{3}) + \psi (a + c + d + \frac{1}{2})]\} . \end{array} $ (17)

由于

$ \Gamma (\frac{7}{6}) = \Gamma (1 + \frac{1}{6}) = \frac{1}{6}\Gamma (\frac{1}{6}), $ (18)

利用欧拉反射公式(4), 我们有

$ \Gamma (\frac{1}{6})\Gamma (\frac{5}{6}) = \frac{\pi }{{\sin (\frac{\pi }{6})}} = 2\pi, $ (19)

以及

$ \Gamma (\frac{1}{3})\Gamma (\frac{2}{3}) = \frac{\pi }{{\sin (\frac{\pi }{3})}} = \frac{{2\pi }}{{\sqrt 3 }}. $ (20)

在等式(17) 的两边同时乘以$2$且将式(18)-(20) 代入到此公式, 我们就得到了公式(16).

例1 在定理1.4中, 取$(a, b, c, d)=(1, 0, 0, 0)$, 则有

$ \begin{array}{l} \sum\limits_{n = 0}^\infty H (\frac{3}{2}, - \frac{1}{2}, - \frac{1}{3}, - \frac{2}{3}, n)\frac{{(4n + 3){{(\frac{1}{2})}_{n + 1}}{{(\frac{1}{2})}_n}{{(\frac{1}{3})}_n}{{(\frac{2}{3})}_n}}}{{n!{{(1)}_{n + 1}}{{(\frac{7}{6})}_{n + 1}}{{(\frac{5}{6})}_{n + 1}}}}\\ = \frac{{\psi (1) - [\psi (\frac{5}{3}) + \psi (\frac{4}{3}) + \psi (\frac{3}{2})]}}{{\pi \sqrt 3 (\frac{2}{3})(\frac{1}{3})(\frac{1}{2})}}. \end{array} $

利用式(6) 和(8) 来计算$\psi(\frac{5}{3})$, $\psi(\frac{4}{3})$, $\psi(\frac{3}{2})$的值, 则能够进一步得到

$ \begin{array}{l} \frac{{3\sqrt 3 }}{\pi }[2\gamma-\frac{{13}}{2} + 3\ln 3 + 2\ln 2]\\ = \sum\limits_{n = 0}^\infty \{ [\frac{2}{{4n + 3}} + \psi (n + \frac{3}{2})] - [\psi (n + 2) + \psi (n + \frac{{13}}{6}) + \psi (n + \frac{{11}}{6})]\} \\ \times \frac{{(4n + 3){{(\frac{1}{2})}_{n + 1}}{{(\frac{1}{2})}_n}{{(\frac{1}{3})}_n}{{(\frac{2}{3})}_n}}}{{n!{{(1)}_{n + 1}}{{(\frac{7}{6})}_{n + 1}}{{(\frac{5}{6})}_{n + 1}}}}. \end{array} $

例2 在定理1.4中令$(a, b, c, d)=(1, -1, 1, 0)$, 可以得出

$ \begin{array}{l} \frac{{\sqrt 3 }}{{2\pi }}[\frac{{25}}{6}-2(\ln 2 + \gamma )-3\ln 3]\\ = \sum\limits_{n = 0}^\infty \{ [\frac{2}{{4n + 3}} + {\psi _0}(n + \frac{3}{2})] - [\psi (n + 1) + \psi (n + \frac{{19}}{6}) + \psi (n + \frac{{11}}{6})]\} {\mkern 1mu} \\ \times \frac{{(4n + 3)(\frac{1}{2})_{n + 1}^2{{(\frac{1}{3})}_{n -1}}{{(\frac{2}{3})}_n}}}{{n{!^2}{{(\frac{7}{6})}_{n + 2}}{{(\frac{5}{6})}_{n + 1}}}}. \end{array} $
2 $\pi^2$的一般级数展开式

在这一节中, 我们利用定理1.3来证明下面的级数展开式.

定理2.1 若${\mathfrak{R}}(a+b+c+d-\frac{1}{2})>0$, 则

$ \begin{array}{l} \frac{{{\pi ^2}{{(\frac{1}{2})}_{- b}}{{(\frac{1}{2})}_{- c}}{{(\frac{1}{2})}_{- d}}{{(\frac{1}{2})}_{a + b + c + d - 1}}}}{{{{(1)}_{a + b + c - 1}}{{(1)}_{a + b + d - 1}}{{(1)}_{a + c + d - 1}}}}\{ \psi (a + b + c + d - \frac{1}{2})\\ - [\psi (a + b + c) + \psi (a + b + d) + \psi (a + c + d)]\} \\ = \sum\limits_{n = 0}^\infty H (a, b -\frac{1}{2}, c -\frac{1}{2}, d -\frac{1}{2}, n)\frac{{(a + 2n){{(1)}_{a + n - 1}}{{(\frac{1}{2})}_{n - b}}{{(\frac{1}{2})}_{n - c}}{{(\frac{1}{2})}_{n - d}}}}{{n!{{(\frac{1}{2})}_{a + b + n}}{{(\frac{1}{2})}_{a + c + n}}{{(\frac{1}{2})}_{a + d + n}}}}. \end{array} $

证 明 利用递归关系式$\Gamma(z+1)=z\Gamma(z)$, 我们可将定理1.3中的(15) 式表示为

$ \begin{array}{l} \sum\limits_{n = 0}^\infty H (a + \alpha, b- \beta, c- \gamma, d- \delta, n)\frac{{(a + 2n + \alpha ){{(\alpha + 1)}_{a + n - 1}}{{(\beta )}_{n - b}}{{(\gamma )}_{n - c}}{{(\delta )}_{n - d}}}}{{n!{{(1 + \alpha - \beta )}_{a + b + n}}{{(1 + \alpha - \gamma )}_{a + c + n}}{{(1 + \alpha - \delta )}_{a + d + n}}}}\\ = \frac{{\Gamma (1 + \alpha - \beta )\Gamma (1 + \alpha - \gamma )\Gamma (1 + \alpha - \delta )\Gamma (2 + \alpha - \beta - \gamma - \delta )}}{{\Gamma (\alpha + 1)\Gamma (2 + \alpha - \beta - \gamma )\Gamma (2 + \alpha - \beta - \delta )\Gamma (2 + \alpha - \gamma - \delta )}}\\ \times \frac{{{{(\beta )}_{ - b}}{{(\gamma )}_{ - c}}{{(\delta )}_{ - d}}{{(2 + \alpha - \beta - \gamma - \delta )}_{a + b + c + d - 1}}}}{{{{(2 + \alpha - \beta - \gamma )}_{a + b + c - 1}}{{(2 + \alpha - \beta - \delta )}_{a + b + d - 1}}{{(2 + \alpha - \gamma - \delta )}_{a + c + d - 1}}}}\\ \times \{ \psi (a + b + c + d + 1 + \alpha - \beta - \gamma - \delta ) - [\psi (a + b + c + 1 + \alpha-\beta-\gamma )\\ + \psi (a + b + d + 1 + \alpha-\beta - \delta ) + \psi (a + c + d + 1 + \alpha - \gamma - \delta )]\} . \end{array} $

在上面等式中令$(\alpha, \beta, \gamma, \delta)=(0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2})$并将$\Gamma(\frac{1}{2})=\sqrt{\pi}$代入所得到的结果, 我们便完成了定理的证明.

例3 在定理2.1中, 令$(a, b, c, d)=(1, 0, 0, 0)$, 则有

$ \frac{{{\pi ^2}}}{4}[\gamma-\ln 2] = \sum\limits_{n = 0}^\infty [\frac{1}{{2n + 1}} + \psi (n + 1)-3\psi (n + \frac{3}{2})]\frac{1}{{{{(2n + 1)}^2}}}. $

例4 在定理2.1中, 取$(a, b, c, d)=(1, 1, 0, 0)$, 则有

$ \begin{array}{l} \frac{{{\pi ^2}}}{{16}}[\ln 2-\gamma] = \sum\limits_{n = 0}^\infty [\frac{1}{{2n + 1}} + \psi (n + 1)-\psi (n + \frac{5}{2})-2\psi (n + \frac{3}{2})]\\ \times \frac{1}{{(2n -1){{(2n + 1)}^2}(2n + 3)}}. \end{array} $

例5 在定理2.1中, 令$(a, b, c, d)=(2, -1, 0, 0)$, 则可得

$ \begin{array}{l} \frac{{{\pi ^2}}}{{64}}[2(\gamma-\ln 2)-1] = \sum\limits_{n = 0}^\infty [\frac{1}{{2(n + 1)}} + \psi (n + 2)-\psi (n + \frac{3}{2})-2\psi (n + \frac{5}{2})]\\ \times \frac{{{{(n + 1)}^2}}}{{{{(2n + 1)}^2}{{(2n + 3)}^2}}}. \end{array} $
3 $\Gamma^{-3}(\frac{2}{3})$的一般级数展开式

定理3.1 若${\mathfrak{R}}(a+b+c+d+\frac{1}{3})>0$, 则有

$ \begin{array}{l} \frac{{3{{(\frac{1}{3})}_{- b}}{{(\frac{1}{3})}_{- c}}{{(\frac{1}{3})}_{- d}}{{(\frac{1}{3})}_{a + b + c + d}}}}{{{\Gamma ^3}(\frac{2}{3}){{(\frac{2}{3})}_{a + b + c}}{{(\frac{2}{3})}_{a + b + d}}{{(\frac{2}{3})}_{a + c + d}}}}\\ \times \{ \psi (a + b + c + d + \frac{1}{3}) - [\psi (a + b + c + \frac{2}{3}) + \psi (a + b + d + \frac{2}{3}) + \psi (a + c + d + \frac{2}{3})]\} \\ = \sum\limits_{n = 0}^\infty H (a + \frac{1}{3}, b -\frac{1}{3}, c -\frac{1}{3}, d -\frac{1}{3}, n)\frac{{(3a + 6n + 1){{(\frac{1}{3})}_{a + n}}{{(\frac{1}{3})}_{n - b}}{{(\frac{1}{3})}_{n - c}}{{(\frac{1}{3})}_{n - d}}}}{{n!{{(1)}_{a + b + n}}{{(1)}_{a + c + n}}{{(1)}_{a + d + n}}}}. \end{array} $ (21)

证 明 在定理1.3中令$(\alpha, \beta, \gamma, \delta)=(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3})$, 并利用关系$\Gamma(\frac{4}{3})=\frac{1}{3}\Gamma(\frac{1}{3})$以及$(\frac{1}{3})(\frac{4}{3})_{a+b+c+d-1}=(\frac{1}{3})_{a+b+c+d}$, 我们便完成了定理的证明.

例6 在定理3.1中令$(a, b, c, d)=(0, 0, 0, 0)$, 我们可推出

$ \frac{3}{{{\Gamma ^3}(\frac{2}{3})}}[2\gamma-\frac{{2\pi \sqrt 3 }}{3} + 3\ln 3] = \sum\limits_{n = 0}^\infty [\frac{3}{{6n + 1}} + \psi (n + \frac{1}{3})-3\psi (n + 1)]\frac{{(6n + 1)(\frac{1}{3})_n^4}}{{n{!^4}}}. $

例7 在定理3.1中令$(a, b, c, d)=(1, 0, 0, 0)$, 我们可得到结论

$ \begin{array}{l} \frac{{27}}{{16{\Gamma ^3}(\frac{2}{3})}}[2\gamma + 3\ln 3-\frac{{2\pi \sqrt 3 }}{3}-\frac{3}{2}]\\ = \sum\limits_{n = 0}^\infty [\frac{3}{{6n + 4}} + \psi (n + \frac{4}{3})-3\psi (n + 2)]\frac{{(3n + 2){{(\frac{1}{3})}_{n + 1}}(\frac{1}{3})_n^3}}{{n!(n + 1){!^3}}}. \end{array} $

例8 在定理3.1中选取$(a, b, c, d)=(1, -1, 0, 0)$, 我们可得到

$ \begin{array}{l} \frac{3}{{4{\Gamma ^3}(\frac{2}{3})}}[2\gamma + 3\ln 3-\frac{{2\pi \sqrt 3 }}{3}-\frac{3}{2}]\\ = \sum\limits_{n = 0}^\infty [\frac{3}{{6n + 4}} + \psi (n + \frac{4}{3})-\psi (n + 1)-2\psi (n + 2)]\frac{{(3n + 2)(\frac{1}{3})_{n + 1}^2(\frac{1}{3})_n^2}}{{n{!^2}(n + 1){!^2}}}. \end{array} $
4 $\frac{1}{\sqrt{\pi}}\Gamma^{-2}(\frac{3}{4})$的一般级数展开式

定理4.1 若${\mathfrak{R}}(a+b+c+d+\frac{1}{2})>0$, 则有

$ \begin{array}{l} \frac{{2\sqrt 2 {{(\frac{1}{4})}_{- b}}{{(\frac{1}{4})}_{- c}}{{(\frac{1}{4})}_{- d}}{{(\frac{1}{2})}_{a + b + c + d}}}}{{\sqrt \pi {\Gamma ^2}(\frac{3}{4}){{(\frac{3}{4})}_{a + b + c}}{{(\frac{3}{4})}_{a + b + d}}{{(\frac{3}{4})}_{a + c + d}}}}\\ \times \{ \psi (a + b + c + d + \frac{1}{2}) - [\psi (a + b + c + \frac{3}{4}) + \psi (a + b + d + \frac{3}{4}) + \psi (a + c + d + \frac{3}{4})]\} \\ = \sum\limits_{n = 0}^\infty H (a + \frac{1}{4}, b -\frac{1}{4}, c -\frac{1}{4}, d -\frac{1}{4}, n)\frac{{(4a + 8n + 1){{(\frac{1}{4})}_{a + n}}{{(\frac{1}{4})}_{n - b}}{{(\frac{1}{4})}_{n - c}}{{(\frac{1}{4})}_{n - d}}}}{{n!{{(1)}_{a + b + n}}{{(1)}_{a + c + n}}{{(1)}_{a + d + n}}}}. \end{array} $ (22)

证 明 在定理1.3中令$(\alpha, \beta, \gamma, \delta)=(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4})$, 并将$\Gamma(\frac{1}{2})=\sqrt{\pi}$$\Gamma(\frac{1}{4})\Gamma (\frac{3}{4})=\sqrt{2}\pi$代入到所得的等式中, 我们就完成了定理的证明.

例9 在定理4.1中令$a=b=c=d=0$, 则有

$ \begin{array}{l} \frac{{2\sqrt 2 }}{{\sqrt \pi {\Gamma ^2}(\frac{3}{4})}}[2\gamma + 7\ln 2-\frac{{3\pi }}{2}]\\ = \sum\limits_{n = 0}^\infty [\frac{4}{{8n + 1}} + \psi (n + \frac{1}{4})-3\psi (n + 1)]\frac{{(8n + 1)(\frac{1}{4})_n^4}}{{n{!^4}}}. \end{array} $

例10 定理4.1中令$a=1$$b=c=d=0$, 则有

$ \begin{array}{l} \frac{{64\sqrt 2 }}{{27\sqrt \pi {\Gamma ^2}(\frac{3}{4})}}[2\gamma + 7\ln 2-2-\frac{{3\pi }}{2}]\\ = \sum\limits_{n = 0}^\infty [\frac{4}{{8n + 5}} + \psi (n + \frac{5}{4})-3\psi (n + 2)]\frac{{(8n + 5){{(\frac{1}{4})}_{n + 1}}(\frac{1}{4})_n^3}}{{n!(n + 1){!^3}}}. \end{array} $
5 $1/\pi^2$的Ramanujan型级数

定理5.1 若${\mathfrak{R}}(a+b+c+d)>0$, 则有

$ \begin{array}{l} \frac{{2{{(\frac{1}{2})}_{- b}}{{(\frac{1}{2})}_{- c}}{{(\frac{1}{2})}_{- d}}{{(1)}_{a + b + c + d - 1}}}}{{{\pi ^2}{{(\frac{1}{2})}_{a + b + c}}{{(\frac{1}{2})}_{a + b + d}}{{(\frac{1}{2})}_{a + c + d}}}}{\mkern 1mu} \\ \times \{ \psi (a + b + c + d) - [\psi (a + b + c + \frac{1}{2}) + \psi (a + b + d + \frac{1}{2}) + \psi (a + c + d + \frac{1}{2})]\} \\ = \sum\limits_{n = 0}^\infty H (a + \frac{1}{2}, b -\frac{1}{2}, c -\frac{1}{2}, d -\frac{1}{2}, n)\frac{{(4n + 2a + 1){{(\frac{1}{2})}_{a + n}}{{(\frac{1}{2})}_{n - b}}{{(\frac{1}{2})}_{n - c}}{{(\frac{1}{2})}_{n - d}}}}{{n!{{(1)}_{a + b + n}}{{(1)}_{a + c + n}}{{(1)}_{a + d + n}}}}. \end{array} $ (23)

证 明 在定理1.3中取$(\alpha, \beta, \gamma, \delta)=(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2})$并将$\Gamma(\frac{1}{2})=\sqrt{\pi}$应用到所得到的等式中, 我们就完成了定理的证明.

若在定理5.1中令$b=c=d=-a$, 则可得到以下推论.

推论5.1 若${\mathfrak{R}}(a) < 0$, 则

$ \begin{array}{l} \frac{{2(\frac{1}{2})_a^3{{(1)}_{- 2a- 1}}}}{{{\pi ^2}(\frac{1}{2})_{- a}^3}}[\psi (-2a)-3\psi (-a + \frac{1}{2})]\\ = \sum\limits_{n = 0}^\infty H (a + \frac{1}{2}, -a -\frac{1}{2}, -a - \frac{1}{2}, - a - \frac{1}{2}, n)\frac{{(4n + 2a + 1)(\frac{1}{2})_{a + n}^4}}{{n{!^4}}}. \end{array} $ (24)

例11 在推论5.1中令$a=-1$, 则

$ \frac{{128}}{{{\pi ^2}}}[5-2\gamma-6\ln 2] = \sum\limits_{n = 0}^\infty [\frac{2}{{4n-1}} + \psi (n-\frac{1}{2})-3\psi (n + 1)]\frac{{(4n -1)(\frac{1}{2})_{n -1}^4}}{{n{!^4}}}. $

例12 在推论5.1中令$a=-2$, 则

$ \frac{{16384}}{{243{\pi ^2}}}[2\gamma + 6\ln 2-\frac{{37}}{6}] = \sum\limits_{n = 0}^\infty [\frac{2}{{4n-3}} + \psi (n-\frac{3}{2})-3\psi (n + 1)]\frac{{(4n -3)(\frac{1}{2})_{n -2}^4}}{{n{!^4}}}. $

下面, 我们将继续讨论定理5.1的特殊情形.在定理5.1中, 若我们选取$(a, b, c, d)=(k, 0, 0, 0)$并将其简化, 我们很容易得到下面的命题.

命题5.1 若$k$是正整数, 则我们有

$ \begin{array}{l} \frac{{2(k- 1)!}}{{{\pi ^2}(\frac{1}{2})_k^3}}[\psi (k)-3\psi (k + \frac{1}{2})]\\ = \sum\limits_{n = 0}^\infty H (k + \frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}, n)\frac{{(4n + 2k + 1){{(\frac{1}{2})}_{n + k}}(\frac{1}{2})_n^3}}{{n!(n + k){!^3}}}. \end{array} $ (25)

例13 当$k=1$时, 我们可以得到

$ \frac{{64}}{{{\pi ^2}}}[\gamma + 3\ln 2-3] = \sum\limits_{n = 0}^\infty [\frac{2}{{4n + 3}} + \psi (n + \frac{3}{2})-3\psi (n + 2)]\frac{{(2n + 1)(4n + 3)(\frac{1}{2})_n^4}}{{{{(n + 1)}^3}n{!^4}}}. $

命题5.2 若$k$是一个非负整数, 则我们有以下公式

$ \begin{array}{l} \frac{{4k!}}{{{\pi ^2}{{(\frac{1}{2})}_k}(\frac{1}{2})_{k + 1}^2}}[2\psi (k + \frac{3}{2}) + \psi (k + \frac{1}{2})-\psi (k + 1)]\\ = \sum\limits_{n = 0}^\infty H (k + \frac{1}{2}, \frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}, n)\frac{{(4n + 2k + 1){{(\frac{1}{2})}_{n + k}}{{(\frac{1}{2})}_{n -1}}(\frac{1}{2})_n^2}}{{n!{{(1)}_{n + k + 1}}(1)_{n + k}^2}}. \end{array} $ (26)

证 明 在定理5.1中令$(a, b, c, d)=(k, 1, 0, 0)$即可得到上面的等式.

例14 在命题5.2中令$k=0$, 我们可得到

$ \begin{array}{l} \frac{{32}}{{{\pi ^2}}}[2-\gamma-3\ln 2] = \sum\limits_{n = 0}^\infty [\frac{2}{{4n + 1}} + \psi (n + \frac{1}{2})-\psi (n + 2)-2\psi (n + 1)]\\ \times \frac{{(4n + 1){{(\frac{1}{2})}_{n -1}}(\frac{1}{2})_n^3}}{{(n + 1)n{!^4}}}. \end{array} $

例15 在命题5.2中取$k=1$, 我们可推出

$ \begin{array}{l} \frac{{128}}{{9{\pi ^2}}}[\frac{{19}}{3}-2\gamma-6\ln 2] = \sum\limits_{n = 0}^\infty [\frac{2}{{4n + 3}} + \psi (n + \frac{3}{2})-2\psi (n + 2)-\psi (n + 3)]\\ \times \frac{{(4n + 3){{(\frac{1}{2})}_{n + 1}}{{(\frac{1}{2})}_{n -1}}(\frac{1}{2})_n^2}}{{n!(n + 2)!(n + 1){!^2}}}. \end{array} $

在定理5.1中选取$(a, b, c, d)=(k, 1, 1, 0)$, 我们有以下等式

$ \begin{array}{l} \frac{{2(\frac{1}{2})_{- 1}^2{{(1)}_{k + 1}}}}{{{\pi ^2}{{(\frac{1}{2})}_{k + 2}}(\frac{1}{2})_{k + 1}^2}}[\psi (k + 2)-\psi (k + \frac{5}{2})-2\psi (k + \frac{3}{2})]\\ = \sum\limits_{n = 0}^\infty H (k + \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, -\frac{1}{2}, n)\frac{{(4n + 2k + 1){{(\frac{1}{2})}_{n + k}}(\frac{1}{2})_{n -1}^2{{(\frac{1}{2})}_n}}}{{n!(1)_{n + k + 1}^2{{(1)}_{n + k}}}}. \end{array} $

因此我们可得到下面的命题.

命题5.3 $k\geq0$是整数, 则我们有以下公式

$ \begin{array}{l} \frac{{8(k + 1)!}}{{{\pi ^2}{{(\frac{1}{2})}_{k + 2}}(\frac{1}{2})_{k + 1}^2}}[\psi (k + 2)-\psi (k + \frac{5}{2})-2\psi (k + \frac{3}{2})]\\ = \sum\limits_{n = 0}^\infty H (k + \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, -\frac{1}{2}, n)\frac{{(4n + 2k + 1){{(\frac{1}{2})}_{n + k}}(\frac{1}{2})_{n -1}^2{{(\frac{1}{2})}_n}}}{{n!(1)_{n + k + 1}^2{{(1)}_{n + k}}}}. \end{array} $ (27)

例16 在式(27) 中令$k=0$, 我们可以得到

$ \begin{array}{l} \frac{{128}}{{3{\pi ^2}}}[2\gamma + 6\ln 2-\frac{{17}}{3}] = \sum\limits_{n = 0}^\infty [\frac{2}{{4n + 1}} + \psi (n + \frac{1}{2})-2\psi (n + 2)-\psi (n + 1)]\\ \times \frac{{(4n + 1)(\frac{1}{2})_{n -1}^2(\frac{1}{2})_n^2}}{{n{!^2}(n + 1){!^2}}}. \end{array} $

命题5.4 若$k$是整数, 且$k\geq-1$, 我们有

$ \begin{array}{l} \frac{{16(k + 2)!}}{{{\pi ^2}(\frac{1}{2})_{k + 2}^3}}[3\psi (k + \frac{5}{2})-\psi (k + 3)] = \sum\limits_{n = 0}^\infty H (k + \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, n)\\ \times \frac{{(4n + 2k + 1){{(\frac{1}{2})}_{n + k}}(\frac{1}{2})_{n -1}^3}}{{n!(n + k + 1){!^3}}}. \end{array} $ (28)

证 明 在定理5.1中取$(a, b, c, d)=(k, 1, 1, 1)$即完成证明.

例17 在式(28) 中令$k=-1$, 我们得到

$ \frac{{128}}{{{\pi ^2}}}[5-2\gamma-6\ln 2] = \sum\limits_{n = 0}^\infty [\frac{2}{{4n-1}} + \psi (n-\frac{1}{2})-3\psi (n + 1)]\frac{{(4n -1)(\frac{1}{2})_{n -1}^4}}{{n{!^4}}}. $

命题5.5 若$k$是整数, 且$k\geq2$, 我们有

$ \frac{{(k-2)!}}{{{\pi ^2}(\frac{1}{2})_{k-1}^2{{(\frac{1}{2})}_k}}} = \sum\limits_{n = 0}^\infty {\frac{{(4n + 2k + 1){{(\frac{1}{2})}_{n + k}}{{(\frac{1}{2})}_{n + 1}}(\frac{1}{2})_n^2}}{{n!(n + k-1)!(n + k){!^2}}}} . $ (29)

证 明 在文[20]的定理7.1中取$(a, b, c, d)=(k, -1, 0, 0)$.

例18 在式(29) 中令$k=2$, 可得

$ \frac{{16}}{{3{\pi ^2}}} = \sum\limits_{n = 0}^\infty {\frac{{(4n + 5)(\frac{1}{2})_n^2{{(\frac{1}{2})}_{n + 1}}{{(\frac{1}{2})}_{n + 2}}}}{{n!(n + 1)!(n + 2){!^2}}}} . $

例19 在式(29) 中令$k=3$, 可得

$ \frac{{128}}{{135{\pi ^2}}} = \sum\limits_{n = 0}^\infty {\frac{{(4n + 7)(\frac{1}{2})_n^2{{(\frac{1}{2})}_{n + 1}}{{(\frac{1}{2})}_{n + 3}}}}{{n!(n + 2)!(n + 3){!^2}}}} . $

命题5.6 若$k$是整数, 且$k\geq3$, 我们有

$ \frac{{(k-3)!}}{{2{\pi ^2}(\frac{1}{2})_{k-1}^2{{(\frac{1}{2})}_{k-2}}}} = \sum\limits_{n = 0}^\infty {\frac{{(4n + 2k + 1){{(\frac{1}{2})}_{n + k}}{{(\frac{1}{2})}_n}(\frac{1}{2})_{n + 1}^2}}{{n!(n + k - 1){!^2}(n + k)!}}} . $ (30)

证 明 在文[20]的定理7.1中令$(a, b, c, d)=(k, -1, -1, 0)$.

例20 在式(30) 中令$k=3$, 可得

$ \frac{{16}}{{9{\pi ^2}}} = \sum\limits_{n = 0}^\infty {\frac{{(4n + 7)(\frac{1}{2})_{n + 1}^2{{(\frac{1}{2})}_{n + 3}}{{(\frac{1}{2})}_n}}}{{n!(n + 3)!(n + 2){!^2}}}} . $

命题5.7 若$k$是整数, 且$k\geq-1$, 则

$ \frac{{16(k + 2)!}}{{{\pi ^2}(\frac{1}{2})_{k + 2}^3}} = \frac{{(16k + 8){{(\frac{1}{2})}_k}}}{{(k + 1){!^3}}}-\sum\limits_{n = 1}^\infty {\frac{{(4n + 2k + 1){{(\frac{1}{2})}_{n + k}}(\frac{1}{2})_{n-1}^3}}{{n!(n + k + 1){!^3}}}} . $ (31)

证 明 在文[20]的定理7.1中令$(a, b, c, d)=(k, 1, 1, 1)$.

例21 在式(31) 中取$k=-1$, 可得

$ \frac{{128}}{{{\pi ^2}}} = 16-\sum\limits_{n = 1}^\infty {\frac{{(4n-1)(\frac{1}{2})_{n-1}^4}}{{n{!^4}}}} . $

命题5.8 若$k$是整数, 且$k\geq2$, 则有

$ \begin{array}{l} \frac{{(k- 2)!}}{{{\pi ^2}(\frac{1}{2})_{k- 1}^2{{(\frac{1}{2})}_k}}}[\psi (k-1)-2\psi (k-\frac{1}{2}) - \psi (k + \frac{1}{2})]\\ = \sum\limits_{n = 0}^\infty H (k + \frac{1}{2}, -\frac{3}{2}, -\frac{1}{2}, -\frac{1}{2}, n)\frac{{(4n + 2k + 1){{(\frac{1}{2})}_{n + k}}{{(\frac{1}{2})}_{n + 1}}(\frac{1}{2})_n^2}}{{n!(n + k - 1)!(n + k){!^2}}}. \end{array} $ (32)

证 明 在定理5.1中令$(a, b, c, d)=(k, -1, 0, 0)$即完成证明.

例22 在式(32) 中取$k=2$, 则有

$ \begin{array}{l} \frac{{32}}{{3{\pi ^2}}}[\gamma + 3\ln 2-\frac{{10}}{3}] = \sum\limits_{n = 0}^\infty [\frac{2}{{4n + 5}} + \psi (n + \frac{5}{2})-\psi (n + 2)-2\psi (n + 3)]\\ \times \frac{{(4n + 5){{(\frac{1}{2})}_{n + 2}}{{(\frac{1}{2})}_{n + 1}}(\frac{1}{2})_n^2}}{{n!(n + 1)!(n + 2){!^2}}}. \end{array} $

命题5.9 若$k$是整数, 且$k\geq3$, 则

$ \begin{array}{l} \frac{{(k- 3)!}}{{2{\pi ^2}(\frac{1}{2})_{k- 1}^2{{(\frac{1}{2})}_{k- 2}}}}[\psi (k-2)-2\psi (k-\frac{1}{2}) - \psi (k - \frac{3}{2})]\\ = \sum\limits_{n = 0}^\infty H (k + \frac{1}{2}, -\frac{3}{2}, -\frac{3}{2}, -\frac{1}{2}, n)\frac{{(4n + 2k + 1){{(\frac{1}{2})}_{n + k}}(\frac{1}{2})_{n + 1}^2{{(\frac{1}{2})}_n}}}{{n!(n + k - 1){!^2}(n + k)!}}. \end{array} $ (33)

证 明 在定理5.1中令$(a, b, c, d)=(k, -1, -1, 0)$即完成证明.

例23 在式(33) 中取$k=3$便可推出下列等式

$ \begin{array}{l} \frac{{32}}{{9{\pi ^2}}}[\gamma + 3\ln 2-\frac{{11}}{3}] = \sum\limits_{n = 0}^\infty [\frac{2}{{4n + 7}} + \psi (n + \frac{7}{2})-\psi (n + 4)-2\psi (n + 3)]\\ \times \frac{{(4n + 7){{(\frac{1}{2})}_{n + 3}}(\frac{1}{2})_{n + 1}^2{{(\frac{1}{2})}_n}}}{{n!(n + 2){!^2}(n + 3)!}}. \end{array} $

命题5.10 若$k$是整数, 且$k\geq4$, 则有

$ \begin{array}{l} \frac{{(k- 4)!}}{{4{\pi ^2}(\frac{1}{2})_{k- 2}^3}}[\psi (k-3)-3\psi (k-\frac{3}{2})]\\ = \sum\limits_{n = 0}^\infty H (k + \frac{1}{2}, -\frac{3}{2}, -\frac{3}{2}, -\frac{3}{2}, n)\frac{{(4n + 2k + 1){{(\frac{1}{2})}_{n + k}}(\frac{1}{2})_{n + 1}^3}}{{n!(n + k - 1){!^3}}}. \end{array} $ (34)

证 明 在定理5.1中取$(a, b, c, d)=(k, -1, -1, -1)$即完成证明.

例24 在式(34) 中令$k=4$, 可推出以下等式

$ \frac{{32}}{{27{\pi ^2}}}[\gamma + 3\ln 2-4] = \sum\limits_{n = 0}^\infty [\frac{2}{{4n + 9}} + \psi (n + \frac{9}{2})-3\psi (n + 4)]\frac{{(4n + 9){{(\frac{1}{2})}_{n + 4}}(\frac{1}{2})_{n + 1}^3}}{{n!(n + 3){!^3}}}. $
致谢: 这是作者在华东师范大学攻读博士学位期间所写的论文.非常感谢导师刘治国教授在此期间给予的无私帮助和细心指导.
参考文献
[1] RAMANUJAN S. Modular equations and approximations to[J]. Quart J Math Oxford Ser, 1914, 45(2): 350-372.
[2] BORWEIN J M, BORWEIN P B. Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity[M]. New York: Wiley, 1987.
[3] CHUDNOVSKY D V, CHUDNOVSKY G V, Approximations and complex multiplication according to Ramanu-jan [C]//Proceedings of the Centenary Conference, Urbana-Champaign, 1987. Boston: Academic Press, 1988, 375-472.
[4] BARUAH N D, BERNDT B C. Ramanujan's series for 1/π arising from his cubic and quartic theories of elliptic functions[J]. J Math Anal Appl, 2008, 341: 357-371. DOI:10.1016/j.jmaa.2007.10.011
[5] BARUAH N D, BERNDT B C. Eisenstein Series and Ramanujan-type series for 1/π[J]. Ramanujan J, 2010, 23: 17-44. DOI:10.1007/s11139-008-9155-8
[6] BARUAH N D, BERNDT B C, CHAN H H. Ramanujan's series for 1/π: A survey[J]. Amer Math Monthly, 2009, 116: 567-587. DOI:10.4169/193009709X458555
[7] BARUAH N D, NAYAK N. New hypergeometric-like series for 1/π2, arising from Ramanujan's theory of elliptic functions to alternative base 3[J]. Trans Amer Math Soc, 2011, 363: 887-900. DOI:10.1090/S0002-9947-2010-05180-3
[8] CHAN H H, CHAN S H, LIU Z G. Domb's numbers and Ramanujan-Sato type series for 1/π[J]. Adv in Math, 2004, 186: 396-410. DOI:10.1016/j.aim.2003.07.012
[9] CHAN H H, COOPER S, LIAW W C. The Rogers-Ramanujan continued fraction and a quintic iteration for 1/π[J]. Proc Amer Math Soc, 2007, 135(11): 3417-3425. DOI:10.1090/S0002-9939-07-09031-4
[10] CHAN H H, LIAW W C, TAN V. Ramanujan's class invariant n and a new class of series for 1/π[J]. J London Math Soc, 2001, 64(2): 93-106.
[11] CHAN H H, LOO K L. Ramanujan's cubic continued revisited[J]. Acta Arith, 2007, 126: 305-313. DOI:10.4064/aa126-4-2
[12] CHAN H H, VERRILL H. The Apéry numbers, the Almkvist-Zudilin numbers and new series for 1/π[J]. Math Res Lett, 2009, 16: 405-420. DOI:10.4310/MRL.2009.v16.n3.a3
[13] CHAN H H, RUDILIN W. New representations for Apéry-like sequences 1/π[J]. Mathematika, 2010, 56: 107-117. DOI:10.1112/S0025579309000436
[14] CHU W. Dougall's bilateral 2H2 series and Ramanujan-like π formulas[J]. Math Comp, 2011, 80: 2223-2251. DOI:10.1090/S0025-5718-2011-02474-9
[15] COOPER S. Series and iterations for 1/π[J]. Acta Arith, 2010, 141: 33-58. DOI:10.4064/aa141-1-2
[16] GUILLERA J. Hypergeometric identities for 10 extended Ramanujan-type series[J]. Ramanujan J, 2008, 15: 219-234. DOI:10.1007/s11139-007-9074-0
[17] LEVRIE P. Using Fourier-Legendre expansions to derive series for 1/π and 1/π2[J]. Ramanujan J, 2010, 22: 221-230. DOI:10.1007/s11139-010-9222-9
[18] ROGERS M. New 5F4 hypergeometric transformations, three-variable Mahler measures and formulas for 1/π[J]. Ramanujan J, 2009, 18: 327-340. DOI:10.1007/s11139-007-9040-x
[19] ZUDILIN W. More Ramanujan-type formulae for 1/π2[J]. Russian Math Surveys, 2007, 62(3): 634-636. DOI:10.1070/RM2007v062n03ABEH004420
[20] LIU Z G. A summation formula and Ramanujan type series[J]. J Math Anal App, 2012, 389: 1059-1065. DOI:10.1016/j.jmaa.2011.12.048
[21] ANDREWS G E, ASKEY R, ROY R. Special Functions[M]. Cambridge: Cambridge University Press, 1999.