在文献[1]中, Ramanujan共提出了17个关于
目前, 有关
本文需要下列有关特殊函数的一些基本概念.
定义0.1[21] 对任意的复数
| $ \Gamma (z) = \mathop {\lim }\limits_{k \to \infty } \frac{{k!{k^{z-1}}}}{{{{(z)}_k}}}, $ | (1) |
其中
定义0.2 若
| $ {(z)_n} = z(z + 1)(z + 2) \cdots (z + n-1), \quad {(z)_0} = 1. $ |
一般地, 对于任意的复数
| $ {(z)_\alpha } = \frac{{\Gamma (z + \alpha )}}{{\Gamma (z)}}. $ | (2) |
命题0.1[21]
| $ \frac{1}{{\Gamma (z)}} = z{{\rm{e}}^{\gamma z}}\prod\limits_{i = 1}^\infty \{ (1 + \frac{z}{n}){{\rm{e}}^{-z/n}}\} . $ | (3) |
式(3) 中,
| $ \gamma = \mathop {\lim }\limits_{n \to \infty } (\sum\limits_{k = 1}^n {\frac{1}{k}}-\ln n). $ |
命题0.2[21] (欧拉反射公式)
| $ \Gamma (z)\Gamma (1-z) = \frac{\pi }{{\sin \pi z}}. $ | (4) |
定义0.3 双伽马函数
| $ \psi (z) = \frac{{\Gamma '(z)}}{{\Gamma (z)}}. $ | (5) |
命题0.3[21] 双伽马函数
| $ \psi (z + n) = \frac{1}{z} + \frac{1}{{z + 1}} + \cdots + \frac{1}{{z + n-1}} + \psi (z), \quad n = 1, 2, 3, \cdots, $ | (6) |
| $ \psi (\frac{p}{q}) =-\gamma-\frac{\pi }{2}\cot \frac{{\pi p}}{q}-\ln q + 2\sum\limits_{n = 1}^{\left\lfloor {q/2} \right\rfloor } {\cos } \frac{{2\pi np}}{q}\ln (2\sin \frac{{n\pi }}{q}), $ | (7) |
其中
公式(7) 也可以表达为
| $ \psi (\frac{p}{q}) =-\gamma-\frac{\pi }{2}\cot \frac{{\pi p}}{q}-\ln q + \sum\limits_{n = 1}^{q - 1} {\cos } \frac{{2\pi np}}{q}\ln (2\sin \frac{{n\pi }}{q}). $ | (8) |
命题0.4[20] (Dougall
| $ \begin{array}{l} \sum\limits_{n = 0}^\infty {\frac{{(a + 2n)\Gamma (a + n)\Gamma (n-b)\Gamma (n-c)\Gamma (n-d)}}{{n!\Gamma (a + b + n + 1)\Gamma (a + c + n + 1)\Gamma (a + d + n + 1)}}} \\ = \frac{{\Gamma ( - b)\Gamma ( - c)\Gamma ( - d)\Gamma (a + b + c + d + 1)}}{{\Gamma (a + b + c + 1)\Gamma (a + b + d + 1)\Gamma (a + c + d + 1)}}. \end{array} $ | (9) |
命题0.5[20] 若
| $ \begin{array}{l} \sum\limits_{n = 0}^\infty {\frac{{(\alpha + a + 2n){{(\alpha )}_{a + n}}{{(\beta )}_{n-b}}{{(\gamma )}_{n-c}}{{(\delta )}_{n-d}}}}{{n!{{(1 + \alpha - \beta )}_{a + b + n}}{{(1 + \alpha - \gamma )}_{a + c + n}}{{(1 + \alpha - \delta )}_{a + d + n}}}}} \\ = \frac{{\Gamma (1 + \alpha - \beta )\Gamma (1 + \alpha - \gamma )\Gamma (1 + \alpha - \delta )\Gamma (2 + \alpha - \beta - \gamma - \delta )}}{{\Gamma (\alpha )\Gamma (1 + \alpha - \beta - \gamma )\Gamma (1 + \alpha - \beta - \delta )\Gamma (1 + \alpha - \gamma - \delta )}}\\ \times \frac{{{{(\beta )}_{ - b}}{{(\gamma )}_{ - c}}{{(\delta )}_{ - d}}{{(2 + \alpha - \beta - \gamma - \delta )}_{a + b + c + d - 1}}}}{{{{(1 + \alpha - \beta - \gamma )}_{a + b + c}}{{(1 + \alpha - \beta - \delta )}_{a + b + d}}{{(1 + \alpha - \gamma - \delta )}_{a + c + d}}}}. \end{array} $ | (10) |
引理1.1 对于任意的复数
| $ \mathop {\lim }\limits_{n \to \infty } \frac{{\Gamma (n + x)}}{{\Gamma (n + y)}}{n^{y-x}} = 1. $ |
证 明 直接利用式(2) 和定义0.1便可证明该引理.
定理1.1 若
| $ \begin{array}{l} \frac{{{{\rm{d}}^k}}}{{{\rm{d}}{a^k}}}[\sum\limits_{n = 0}^\infty {\frac{{(a + 2n)\Gamma (a + n)\Gamma (n-b)\Gamma (n-c)\Gamma (n-d)}}{{n!\Gamma (a + b + n + 1)\Gamma (a + c + n + 1)\Gamma (a + d + n + 1)}}}]\\ = \sum\limits_{n = 0}^\infty {\frac{{{{\rm{d}}^k}}}{{{\rm{d}}{a^k}}}} [\frac{{(a + 2n)\Gamma (a + n)\Gamma (n-b)\Gamma (n-c)\Gamma (n-d)}}{{n!\Gamma (a + b + n + 1)\Gamma (a + c + n + 1)\Gamma (a + d + n + 1)}}]. \end{array} $ | (11) |
证 明 显然, 上式左边被求导的级数是绝对收敛的.接下来我们需要证明此级数也是一致收敛的.记
| $ {u_n}(a, b, c, d) = \frac{{(a + 2n)\Gamma (a + n)\Gamma (n-b)\Gamma (n-c)\Gamma (n-d)}}{{n!\Gamma (a + b + n + 1)\Gamma (a + c + n + 1)\Gamma (a + d + n + 1)}}. $ |
利用引理1.1, 我们有
| $ \begin{array}{l} \mathop {\lim }\limits_{n \to \infty } \frac{{\Gamma (n + a)}}{{\Gamma (n + a + b + 1)}}{n^{b + 1}} = 1;\quad \mathop {\lim }\limits_{n \to \infty } \frac{{\Gamma (n-c)}}{{\Gamma (n + c + a + 1)}}{n^{a + 2c + 1}} = 1;\\ \mathop {\lim }\limits_{n \to \infty } \frac{{\Gamma (n-d)}}{{\Gamma (n + d + a + 1)}}{n^{a + 2d + 1}} = 1;\quad \mathop {\lim }\limits_{n \to \infty } \frac{{\Gamma (n-b)}}{{\Gamma (n + 1)}}{n^{b + 1}} = 1. \end{array} $ |
因此, 当
| $ {u_n}(a,b,c,d) \sim \frac{{a + 2n}}{{n \cdot {n^b}}} \cdot \frac{1}{{{n^{b + 1}}}} \cdot \frac{1}{{{n^{a + 2c + 1}}}} \cdot \frac{1}{{{n^{a + 2d + 1}}}} \sim \frac{2}{{{n^{2a + 2b + 2c + 2d + 3}}}}. $ |
又由于
定义1.1 设
| $ \begin{array}{l} H(a, b, c, d, n): = [\frac{1}{{a + 2n}} + \psi (a + n)]\\ - [\psi (a + b + n + 1) + \psi (a + c + n + 1) + \psi (a + d + n + 1)], \end{array} $ |
其中
定理1.2 若
| $ \begin{array}{l} \sum\limits_{n = 0}^\infty H (a, b, c, d, n)\frac{{(a + 2n)\Gamma (a + n)\Gamma (n- b)\Gamma (n- c)\Gamma (n- d)}}{{n!\Gamma (a + b + n + 1)\Gamma (a + c + n + 1)\Gamma (a + d + n + 1)}}\\ = \frac{{\Gamma ( - b)\Gamma ( - c)\Gamma ( - d)\Gamma (a + b + c + d + 1)}}{{\Gamma (a + b + c + 1)\Gamma (a + b + d + 1)\Gamma (a + c + d + 1)}}\{ \psi (a + b + c + d + 1)\\ - [\psi (a + b + c + 1) + \psi (a + b + d + 1) + \psi (a + c + d + 1)]\} . \end{array} $ | (12) |
证 明 首先, 我们有
| $ \frac{{\rm{d}}}{{{\rm{d}}a}}[\frac{{(a + 2n)\Gamma (a + n)}}{{\Gamma (a + b + n + 1)\Gamma (a + c + n + 1)\Gamma (a + d + n + 1)}}] = \frac{{{N_1}(a)}}{{{D_1}(a)}}, $ |
其中
| $ \begin{array}{l} {N_1}(a) = [\Gamma (a + n) + (a + 2n)\Gamma '(a + n)]\Gamma (a + b + n + 1)\Gamma (a + c + n + 1)\Gamma (a + d + n + 1)\\ - (a + 2n)\Gamma (a + n)[\Gamma '(a + b + n + 1)\Gamma (a + c + n + 1)\Gamma (a + d + n + 1)\\ + \Gamma (a + b + n + 1)\Gamma '(a + c + n + 1)\Gamma (a + d + n + 1)\\ + \Gamma (a + b + n + 1)\Gamma (a + c + n + 1)\Gamma '(a + d + n + 1)], \end{array} $ |
而
| $ {D_1}(a) = {[\Gamma (a + b + n + 1)\Gamma (a + c + n + 1)\Gamma (a + d + n + 1)]^2}. $ |
因此
| $ \begin{array}{l} \frac{{\rm{d}}}{{{\rm{d}}a}}[\frac{{(a + 2n)\Gamma (a + n)\Gamma (n-b)\Gamma (n-c)\Gamma (n-d)}}{{n!\Gamma (a + b + n + 1)\Gamma (a + c + n + 1)\Gamma (a + d + n + 1)}}]\\ = \frac{{[\frac{1}{{a + 2n}} + \psi (a + n)](a + 2n)\Gamma (a + n)\Gamma (n - b)\Gamma (n - c)\Gamma (n - d)}}{{n!\Gamma (a + b + n + 1)\Gamma (a + c + n + 1)\Gamma (a + d + n + 1)}}\\ - \frac{{(a + 2n)\Gamma (a + n)\Gamma (n - b)\Gamma (n - c)\Gamma (n - d)}}{{n!\Gamma (a + b + n + 1)\Gamma (a + c + n + 1)\Gamma (a + d + n + 1)}}\\ \times [\psi (a + b + n + 1) + \psi (a + c + n + 1) + \psi (a + d + n + 1)] = \\ H(a, b, c, d, n)\frac{{(a + 2n)\Gamma (a + n)\Gamma (n -b)\Gamma (n -c)\Gamma (n -d)}}{{n!\Gamma (a + b + n + 1)\Gamma (a + c + n + 1)\Gamma (a + d + n + 1)}}. \end{array} $ | (13) |
另一方面
| $ \frac{{\rm{d}}}{{{\rm{d}}a}}[\frac{{\Gamma (-b)\Gamma (-c)\Gamma (-d)\Gamma (a + b + c + d + 1)}}{{\Gamma (a + b + c + 1)\Gamma (a + b + d + 1)\Gamma (a + c + d + 1)}}] = \frac{{{N_2}(a)}}{{{D_2}(a)}}, $ |
其中
| $ \begin{array}{l} {N_2}(a) = \Gamma (- b)\Gamma (- c)\Gamma (- d)\Gamma '(a + b + c + d + 1)\\ \Gamma (a + b + c + 1)\Gamma (a + b + d + 1)\Gamma (a + c + d + 1)\\ - \Gamma ( - b)\Gamma ( - c)\Gamma ( - d)\Gamma (a + b + c + d + 1)\\ [\Gamma '(a + b + c + 1)\Gamma (a + b + d + 1)\Gamma (a + c + d + 1)\\ + \Gamma (a + b + c + 1)\Gamma '(a + b + d + 1)\Gamma (a + c + d + 1)\\ + \Gamma (a + b + c + 1)\Gamma (a + b + d + 1)\Gamma '(a + c + d + 1)], \end{array} $ |
而
| $ {D_2}(a) = {[\Gamma (a + b + c + 1)\Gamma (a + b + d + 1)\Gamma (a + c + d + 1)]^2}. $ |
根据
| $ \begin{array}{l} \frac{{{N_2}(a)}}{{{D_2}(a)}} = \frac{{\Gamma (- b)\Gamma (- c)\Gamma (- d)\Gamma (a + b + c + d + 1)}}{{\Gamma (a + b + c + 1)\Gamma (a + b + d + 1)\Gamma (a + c + d + 1)}}\{ \psi (a + b + c + d + 1)\\ - [\psi (a + b + c + 1) + \psi (a + b + d + 1) + \psi (a + c + d + 1)]\} . \end{array} $ | (14) |
最终, 结合公式(9)、(11)、(13) 以及(14), 我们完成了公式(12) 的证明.
定理1.3 若
| $ \begin{array}{l} \sum\limits_{n = 0}^\infty H (a + \alpha, b- \beta, c- \gamma, d- \delta, n)\frac{{(a + 2n + \alpha ){{(\alpha )}_{a + n}}{{(\beta )}_{n - b}}{{(\gamma )}_{n - c}}{{(\delta )}_{n - d}}}}{{n!{{(1 + \alpha - \beta )}_{a + b + n}}{{(1 + \alpha - \gamma )}_{a + c + n}}{{(1 + \alpha - \delta )}_{a + d + n}}}}\\ = \frac{{\Gamma (1 + \alpha - \beta )\Gamma (1 + \alpha - \gamma )\Gamma (1 + \alpha - \delta )\Gamma (2 + \alpha - \beta - \gamma - \delta )}}{{\Gamma (\alpha )\Gamma (1 + \alpha - \beta - \gamma )\Gamma (1 + \alpha - \beta - \delta )\Gamma (1 + \alpha - \gamma - \delta )}}\\ \times \frac{{{{(\beta )}_{ - b}}{{(\gamma )}_{ - c}}{{(\delta )}_{ - d}}{{(2 + \alpha - \beta - \gamma - \delta )}_{a + b + c + d - 1}}}}{{{{(1 + \alpha - \beta - \gamma )}_{a + b + c}}{{(1 + \alpha - \beta - \delta )}_{a + b + d}}{{(1 + \alpha - \gamma - \delta )}_{a + c + d}}}}\\ \times \{ \psi (a + b + c + d + 1 + \alpha - \beta - \gamma - \delta ) - [\psi (a + b + c + 1 + \alpha-\beta-\gamma )\\ + \psi (a + b + d + 1 + \alpha-\beta - \delta ) + \psi (a + c + d + 1 + \alpha - \gamma - \delta )]\} . \end{array} $ | (15) |
证 明 利用公式(2), 并将式(12) 中的
定理1.4 若
| $ \begin{array}{l} \sum\limits_{n = 0}^\infty H (a + \frac{1}{2}, b- \frac{1}{2}, c- \frac{1}{3}, d- \frac{2}{3}, n)\frac{{(4n + 2a + 1){{(\frac{1}{2})}_{n + a}}{{(\frac{1}{2})}_{n - b}}{{(\frac{1}{3})}_{n - c}}{{(\frac{2}{3})}_{n - d}}}}{{n!{{(1)}_{a + b + n}}{{(\frac{7}{6})}_{a + c + n}}{{(\frac{5}{6})}_{a + d + n}}}}\\ = \frac{{{{(\frac{1}{2})}_{ - b}}{{(\frac{1}{3})}_{ - c}}{{(\frac{2}{3})}_{ - d}}{{(1)}_{a + b + c + d - 1}}}}{{\pi \sqrt 3 {{(\frac{2}{3})}_{a + b + c}}{{(\frac{1}{3})}_{a + b + d}}{{(\frac{1}{2})}_{a + c + d}}}}\{ \psi (a + b + c + d) - [\psi (a + b + c + \frac{2}{3}){\mkern 1mu} \\ + \psi (a + b + d + \frac{1}{3}) + \psi (a + c + d + \frac{1}{2})]\} . \end{array} $ | (16) |
证 明 在式(15) 中令
| $ \begin{array}{l} \sum\limits_{n = 0}^\infty H (a + \frac{1}{2}, b- \frac{1}{2}, c- \frac{1}{3}, d- \frac{2}{3}, n)\frac{{(4n + 2a + 1){{(\frac{1}{2})}_{n + a}}{{(\frac{1}{2})}_{n - b}}{{(\frac{1}{3})}_{n - c}}{{(\frac{2}{3})}_{n - d}}}}{{n!{{(1)}_{a + b + n}}{{(\frac{7}{6})}_{a + c + n}}{{(\frac{5}{6})}_{a + d + n}}}}\\ = \frac{{\Gamma (\frac{7}{6})\Gamma (\frac{5}{6}){{(\frac{1}{2})}_{ - b}}{{(\frac{1}{3})}_{ - c}}{{(\frac{2}{3})}_{ - d}}{{(1)}_{a + b + c + d - 1}}}}{{{\Gamma ^2}(\frac{1}{2})\Gamma (\frac{2}{3})\Gamma (\frac{1}{3}){{(\frac{2}{3})}_{a + b + c}}{{(\frac{1}{3})}_{a + b + d}}{{(\frac{1}{2})}_{a + c + d}}}}\{ \psi (a + b + c + d)\\ - [\psi (a + b + c + \frac{2}{3}) + \psi (a + b + d + \frac{1}{3}) + \psi (a + c + d + \frac{1}{2})]\} . \end{array} $ | (17) |
由于
| $ \Gamma (\frac{7}{6}) = \Gamma (1 + \frac{1}{6}) = \frac{1}{6}\Gamma (\frac{1}{6}), $ | (18) |
利用欧拉反射公式(4), 我们有
| $ \Gamma (\frac{1}{6})\Gamma (\frac{5}{6}) = \frac{\pi }{{\sin (\frac{\pi }{6})}} = 2\pi, $ | (19) |
以及
| $ \Gamma (\frac{1}{3})\Gamma (\frac{2}{3}) = \frac{\pi }{{\sin (\frac{\pi }{3})}} = \frac{{2\pi }}{{\sqrt 3 }}. $ | (20) |
在等式(17) 的两边同时乘以
例1 在定理1.4中, 取
| $ \begin{array}{l} \sum\limits_{n = 0}^\infty H (\frac{3}{2}, - \frac{1}{2}, - \frac{1}{3}, - \frac{2}{3}, n)\frac{{(4n + 3){{(\frac{1}{2})}_{n + 1}}{{(\frac{1}{2})}_n}{{(\frac{1}{3})}_n}{{(\frac{2}{3})}_n}}}{{n!{{(1)}_{n + 1}}{{(\frac{7}{6})}_{n + 1}}{{(\frac{5}{6})}_{n + 1}}}}\\ = \frac{{\psi (1) - [\psi (\frac{5}{3}) + \psi (\frac{4}{3}) + \psi (\frac{3}{2})]}}{{\pi \sqrt 3 (\frac{2}{3})(\frac{1}{3})(\frac{1}{2})}}. \end{array} $ |
利用式(6) 和(8) 来计算
| $ \begin{array}{l} \frac{{3\sqrt 3 }}{\pi }[2\gamma-\frac{{13}}{2} + 3\ln 3 + 2\ln 2]\\ = \sum\limits_{n = 0}^\infty \{ [\frac{2}{{4n + 3}} + \psi (n + \frac{3}{2})] - [\psi (n + 2) + \psi (n + \frac{{13}}{6}) + \psi (n + \frac{{11}}{6})]\} \\ \times \frac{{(4n + 3){{(\frac{1}{2})}_{n + 1}}{{(\frac{1}{2})}_n}{{(\frac{1}{3})}_n}{{(\frac{2}{3})}_n}}}{{n!{{(1)}_{n + 1}}{{(\frac{7}{6})}_{n + 1}}{{(\frac{5}{6})}_{n + 1}}}}. \end{array} $ |
例2 在定理1.4中令
| $ \begin{array}{l} \frac{{\sqrt 3 }}{{2\pi }}[\frac{{25}}{6}-2(\ln 2 + \gamma )-3\ln 3]\\ = \sum\limits_{n = 0}^\infty \{ [\frac{2}{{4n + 3}} + {\psi _0}(n + \frac{3}{2})] - [\psi (n + 1) + \psi (n + \frac{{19}}{6}) + \psi (n + \frac{{11}}{6})]\} {\mkern 1mu} \\ \times \frac{{(4n + 3)(\frac{1}{2})_{n + 1}^2{{(\frac{1}{3})}_{n -1}}{{(\frac{2}{3})}_n}}}{{n{!^2}{{(\frac{7}{6})}_{n + 2}}{{(\frac{5}{6})}_{n + 1}}}}. \end{array} $ |
在这一节中, 我们利用定理1.3来证明下面的级数展开式.
定理2.1 若
| $ \begin{array}{l} \frac{{{\pi ^2}{{(\frac{1}{2})}_{- b}}{{(\frac{1}{2})}_{- c}}{{(\frac{1}{2})}_{- d}}{{(\frac{1}{2})}_{a + b + c + d - 1}}}}{{{{(1)}_{a + b + c - 1}}{{(1)}_{a + b + d - 1}}{{(1)}_{a + c + d - 1}}}}\{ \psi (a + b + c + d - \frac{1}{2})\\ - [\psi (a + b + c) + \psi (a + b + d) + \psi (a + c + d)]\} \\ = \sum\limits_{n = 0}^\infty H (a, b -\frac{1}{2}, c -\frac{1}{2}, d -\frac{1}{2}, n)\frac{{(a + 2n){{(1)}_{a + n - 1}}{{(\frac{1}{2})}_{n - b}}{{(\frac{1}{2})}_{n - c}}{{(\frac{1}{2})}_{n - d}}}}{{n!{{(\frac{1}{2})}_{a + b + n}}{{(\frac{1}{2})}_{a + c + n}}{{(\frac{1}{2})}_{a + d + n}}}}. \end{array} $ |
证 明 利用递归关系式
| $ \begin{array}{l} \sum\limits_{n = 0}^\infty H (a + \alpha, b- \beta, c- \gamma, d- \delta, n)\frac{{(a + 2n + \alpha ){{(\alpha + 1)}_{a + n - 1}}{{(\beta )}_{n - b}}{{(\gamma )}_{n - c}}{{(\delta )}_{n - d}}}}{{n!{{(1 + \alpha - \beta )}_{a + b + n}}{{(1 + \alpha - \gamma )}_{a + c + n}}{{(1 + \alpha - \delta )}_{a + d + n}}}}\\ = \frac{{\Gamma (1 + \alpha - \beta )\Gamma (1 + \alpha - \gamma )\Gamma (1 + \alpha - \delta )\Gamma (2 + \alpha - \beta - \gamma - \delta )}}{{\Gamma (\alpha + 1)\Gamma (2 + \alpha - \beta - \gamma )\Gamma (2 + \alpha - \beta - \delta )\Gamma (2 + \alpha - \gamma - \delta )}}\\ \times \frac{{{{(\beta )}_{ - b}}{{(\gamma )}_{ - c}}{{(\delta )}_{ - d}}{{(2 + \alpha - \beta - \gamma - \delta )}_{a + b + c + d - 1}}}}{{{{(2 + \alpha - \beta - \gamma )}_{a + b + c - 1}}{{(2 + \alpha - \beta - \delta )}_{a + b + d - 1}}{{(2 + \alpha - \gamma - \delta )}_{a + c + d - 1}}}}\\ \times \{ \psi (a + b + c + d + 1 + \alpha - \beta - \gamma - \delta ) - [\psi (a + b + c + 1 + \alpha-\beta-\gamma )\\ + \psi (a + b + d + 1 + \alpha-\beta - \delta ) + \psi (a + c + d + 1 + \alpha - \gamma - \delta )]\} . \end{array} $ |
在上面等式中令
例3 在定理2.1中, 令
| $ \frac{{{\pi ^2}}}{4}[\gamma-\ln 2] = \sum\limits_{n = 0}^\infty [\frac{1}{{2n + 1}} + \psi (n + 1)-3\psi (n + \frac{3}{2})]\frac{1}{{{{(2n + 1)}^2}}}. $ |
例4 在定理2.1中, 取
| $ \begin{array}{l} \frac{{{\pi ^2}}}{{16}}[\ln 2-\gamma] = \sum\limits_{n = 0}^\infty [\frac{1}{{2n + 1}} + \psi (n + 1)-\psi (n + \frac{5}{2})-2\psi (n + \frac{3}{2})]\\ \times \frac{1}{{(2n -1){{(2n + 1)}^2}(2n + 3)}}. \end{array} $ |
例5 在定理2.1中, 令
| $ \begin{array}{l} \frac{{{\pi ^2}}}{{64}}[2(\gamma-\ln 2)-1] = \sum\limits_{n = 0}^\infty [\frac{1}{{2(n + 1)}} + \psi (n + 2)-\psi (n + \frac{3}{2})-2\psi (n + \frac{5}{2})]\\ \times \frac{{{{(n + 1)}^2}}}{{{{(2n + 1)}^2}{{(2n + 3)}^2}}}. \end{array} $ |
定理3.1 若
| $ \begin{array}{l} \frac{{3{{(\frac{1}{3})}_{- b}}{{(\frac{1}{3})}_{- c}}{{(\frac{1}{3})}_{- d}}{{(\frac{1}{3})}_{a + b + c + d}}}}{{{\Gamma ^3}(\frac{2}{3}){{(\frac{2}{3})}_{a + b + c}}{{(\frac{2}{3})}_{a + b + d}}{{(\frac{2}{3})}_{a + c + d}}}}\\ \times \{ \psi (a + b + c + d + \frac{1}{3}) - [\psi (a + b + c + \frac{2}{3}) + \psi (a + b + d + \frac{2}{3}) + \psi (a + c + d + \frac{2}{3})]\} \\ = \sum\limits_{n = 0}^\infty H (a + \frac{1}{3}, b -\frac{1}{3}, c -\frac{1}{3}, d -\frac{1}{3}, n)\frac{{(3a + 6n + 1){{(\frac{1}{3})}_{a + n}}{{(\frac{1}{3})}_{n - b}}{{(\frac{1}{3})}_{n - c}}{{(\frac{1}{3})}_{n - d}}}}{{n!{{(1)}_{a + b + n}}{{(1)}_{a + c + n}}{{(1)}_{a + d + n}}}}. \end{array} $ | (21) |
证 明 在定理1.3中令
例6 在定理3.1中令
| $ \frac{3}{{{\Gamma ^3}(\frac{2}{3})}}[2\gamma-\frac{{2\pi \sqrt 3 }}{3} + 3\ln 3] = \sum\limits_{n = 0}^\infty [\frac{3}{{6n + 1}} + \psi (n + \frac{1}{3})-3\psi (n + 1)]\frac{{(6n + 1)(\frac{1}{3})_n^4}}{{n{!^4}}}. $ |
例7 在定理3.1中令
| $ \begin{array}{l} \frac{{27}}{{16{\Gamma ^3}(\frac{2}{3})}}[2\gamma + 3\ln 3-\frac{{2\pi \sqrt 3 }}{3}-\frac{3}{2}]\\ = \sum\limits_{n = 0}^\infty [\frac{3}{{6n + 4}} + \psi (n + \frac{4}{3})-3\psi (n + 2)]\frac{{(3n + 2){{(\frac{1}{3})}_{n + 1}}(\frac{1}{3})_n^3}}{{n!(n + 1){!^3}}}. \end{array} $ |
例8 在定理3.1中选取
| $ \begin{array}{l} \frac{3}{{4{\Gamma ^3}(\frac{2}{3})}}[2\gamma + 3\ln 3-\frac{{2\pi \sqrt 3 }}{3}-\frac{3}{2}]\\ = \sum\limits_{n = 0}^\infty [\frac{3}{{6n + 4}} + \psi (n + \frac{4}{3})-\psi (n + 1)-2\psi (n + 2)]\frac{{(3n + 2)(\frac{1}{3})_{n + 1}^2(\frac{1}{3})_n^2}}{{n{!^2}(n + 1){!^2}}}. \end{array} $ |
定理4.1 若
| $ \begin{array}{l} \frac{{2\sqrt 2 {{(\frac{1}{4})}_{- b}}{{(\frac{1}{4})}_{- c}}{{(\frac{1}{4})}_{- d}}{{(\frac{1}{2})}_{a + b + c + d}}}}{{\sqrt \pi {\Gamma ^2}(\frac{3}{4}){{(\frac{3}{4})}_{a + b + c}}{{(\frac{3}{4})}_{a + b + d}}{{(\frac{3}{4})}_{a + c + d}}}}\\ \times \{ \psi (a + b + c + d + \frac{1}{2}) - [\psi (a + b + c + \frac{3}{4}) + \psi (a + b + d + \frac{3}{4}) + \psi (a + c + d + \frac{3}{4})]\} \\ = \sum\limits_{n = 0}^\infty H (a + \frac{1}{4}, b -\frac{1}{4}, c -\frac{1}{4}, d -\frac{1}{4}, n)\frac{{(4a + 8n + 1){{(\frac{1}{4})}_{a + n}}{{(\frac{1}{4})}_{n - b}}{{(\frac{1}{4})}_{n - c}}{{(\frac{1}{4})}_{n - d}}}}{{n!{{(1)}_{a + b + n}}{{(1)}_{a + c + n}}{{(1)}_{a + d + n}}}}. \end{array} $ | (22) |
证 明 在定理1.3中令
例9 在定理4.1中令
| $ \begin{array}{l} \frac{{2\sqrt 2 }}{{\sqrt \pi {\Gamma ^2}(\frac{3}{4})}}[2\gamma + 7\ln 2-\frac{{3\pi }}{2}]\\ = \sum\limits_{n = 0}^\infty [\frac{4}{{8n + 1}} + \psi (n + \frac{1}{4})-3\psi (n + 1)]\frac{{(8n + 1)(\frac{1}{4})_n^4}}{{n{!^4}}}. \end{array} $ |
例10 定理4.1中令
| $ \begin{array}{l} \frac{{64\sqrt 2 }}{{27\sqrt \pi {\Gamma ^2}(\frac{3}{4})}}[2\gamma + 7\ln 2-2-\frac{{3\pi }}{2}]\\ = \sum\limits_{n = 0}^\infty [\frac{4}{{8n + 5}} + \psi (n + \frac{5}{4})-3\psi (n + 2)]\frac{{(8n + 5){{(\frac{1}{4})}_{n + 1}}(\frac{1}{4})_n^3}}{{n!(n + 1){!^3}}}. \end{array} $ |
定理5.1 若
| $ \begin{array}{l} \frac{{2{{(\frac{1}{2})}_{- b}}{{(\frac{1}{2})}_{- c}}{{(\frac{1}{2})}_{- d}}{{(1)}_{a + b + c + d - 1}}}}{{{\pi ^2}{{(\frac{1}{2})}_{a + b + c}}{{(\frac{1}{2})}_{a + b + d}}{{(\frac{1}{2})}_{a + c + d}}}}{\mkern 1mu} \\ \times \{ \psi (a + b + c + d) - [\psi (a + b + c + \frac{1}{2}) + \psi (a + b + d + \frac{1}{2}) + \psi (a + c + d + \frac{1}{2})]\} \\ = \sum\limits_{n = 0}^\infty H (a + \frac{1}{2}, b -\frac{1}{2}, c -\frac{1}{2}, d -\frac{1}{2}, n)\frac{{(4n + 2a + 1){{(\frac{1}{2})}_{a + n}}{{(\frac{1}{2})}_{n - b}}{{(\frac{1}{2})}_{n - c}}{{(\frac{1}{2})}_{n - d}}}}{{n!{{(1)}_{a + b + n}}{{(1)}_{a + c + n}}{{(1)}_{a + d + n}}}}. \end{array} $ | (23) |
证 明 在定理1.3中取
若在定理5.1中令
推论5.1 若
| $ \begin{array}{l} \frac{{2(\frac{1}{2})_a^3{{(1)}_{- 2a- 1}}}}{{{\pi ^2}(\frac{1}{2})_{- a}^3}}[\psi (-2a)-3\psi (-a + \frac{1}{2})]\\ = \sum\limits_{n = 0}^\infty H (a + \frac{1}{2}, -a -\frac{1}{2}, -a - \frac{1}{2}, - a - \frac{1}{2}, n)\frac{{(4n + 2a + 1)(\frac{1}{2})_{a + n}^4}}{{n{!^4}}}. \end{array} $ | (24) |
例11 在推论5.1中令
| $ \frac{{128}}{{{\pi ^2}}}[5-2\gamma-6\ln 2] = \sum\limits_{n = 0}^\infty [\frac{2}{{4n-1}} + \psi (n-\frac{1}{2})-3\psi (n + 1)]\frac{{(4n -1)(\frac{1}{2})_{n -1}^4}}{{n{!^4}}}. $ |
例12 在推论5.1中令
| $ \frac{{16384}}{{243{\pi ^2}}}[2\gamma + 6\ln 2-\frac{{37}}{6}] = \sum\limits_{n = 0}^\infty [\frac{2}{{4n-3}} + \psi (n-\frac{3}{2})-3\psi (n + 1)]\frac{{(4n -3)(\frac{1}{2})_{n -2}^4}}{{n{!^4}}}. $ |
下面, 我们将继续讨论定理5.1的特殊情形.在定理5.1中, 若我们选取
命题5.1 若
| $ \begin{array}{l} \frac{{2(k- 1)!}}{{{\pi ^2}(\frac{1}{2})_k^3}}[\psi (k)-3\psi (k + \frac{1}{2})]\\ = \sum\limits_{n = 0}^\infty H (k + \frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}, n)\frac{{(4n + 2k + 1){{(\frac{1}{2})}_{n + k}}(\frac{1}{2})_n^3}}{{n!(n + k){!^3}}}. \end{array} $ | (25) |
例13 当
| $ \frac{{64}}{{{\pi ^2}}}[\gamma + 3\ln 2-3] = \sum\limits_{n = 0}^\infty [\frac{2}{{4n + 3}} + \psi (n + \frac{3}{2})-3\psi (n + 2)]\frac{{(2n + 1)(4n + 3)(\frac{1}{2})_n^4}}{{{{(n + 1)}^3}n{!^4}}}. $ |
命题5.2 若
| $ \begin{array}{l} \frac{{4k!}}{{{\pi ^2}{{(\frac{1}{2})}_k}(\frac{1}{2})_{k + 1}^2}}[2\psi (k + \frac{3}{2}) + \psi (k + \frac{1}{2})-\psi (k + 1)]\\ = \sum\limits_{n = 0}^\infty H (k + \frac{1}{2}, \frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}, n)\frac{{(4n + 2k + 1){{(\frac{1}{2})}_{n + k}}{{(\frac{1}{2})}_{n -1}}(\frac{1}{2})_n^2}}{{n!{{(1)}_{n + k + 1}}(1)_{n + k}^2}}. \end{array} $ | (26) |
证 明 在定理5.1中令
例14 在命题5.2中令
| $ \begin{array}{l} \frac{{32}}{{{\pi ^2}}}[2-\gamma-3\ln 2] = \sum\limits_{n = 0}^\infty [\frac{2}{{4n + 1}} + \psi (n + \frac{1}{2})-\psi (n + 2)-2\psi (n + 1)]\\ \times \frac{{(4n + 1){{(\frac{1}{2})}_{n -1}}(\frac{1}{2})_n^3}}{{(n + 1)n{!^4}}}. \end{array} $ |
例15 在命题5.2中取
| $ \begin{array}{l} \frac{{128}}{{9{\pi ^2}}}[\frac{{19}}{3}-2\gamma-6\ln 2] = \sum\limits_{n = 0}^\infty [\frac{2}{{4n + 3}} + \psi (n + \frac{3}{2})-2\psi (n + 2)-\psi (n + 3)]\\ \times \frac{{(4n + 3){{(\frac{1}{2})}_{n + 1}}{{(\frac{1}{2})}_{n -1}}(\frac{1}{2})_n^2}}{{n!(n + 2)!(n + 1){!^2}}}. \end{array} $ |
在定理5.1中选取
| $ \begin{array}{l} \frac{{2(\frac{1}{2})_{- 1}^2{{(1)}_{k + 1}}}}{{{\pi ^2}{{(\frac{1}{2})}_{k + 2}}(\frac{1}{2})_{k + 1}^2}}[\psi (k + 2)-\psi (k + \frac{5}{2})-2\psi (k + \frac{3}{2})]\\ = \sum\limits_{n = 0}^\infty H (k + \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, -\frac{1}{2}, n)\frac{{(4n + 2k + 1){{(\frac{1}{2})}_{n + k}}(\frac{1}{2})_{n -1}^2{{(\frac{1}{2})}_n}}}{{n!(1)_{n + k + 1}^2{{(1)}_{n + k}}}}. \end{array} $ |
因此我们可得到下面的命题.
命题5.3
| $ \begin{array}{l} \frac{{8(k + 1)!}}{{{\pi ^2}{{(\frac{1}{2})}_{k + 2}}(\frac{1}{2})_{k + 1}^2}}[\psi (k + 2)-\psi (k + \frac{5}{2})-2\psi (k + \frac{3}{2})]\\ = \sum\limits_{n = 0}^\infty H (k + \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, -\frac{1}{2}, n)\frac{{(4n + 2k + 1){{(\frac{1}{2})}_{n + k}}(\frac{1}{2})_{n -1}^2{{(\frac{1}{2})}_n}}}{{n!(1)_{n + k + 1}^2{{(1)}_{n + k}}}}. \end{array} $ | (27) |
例16 在式(27) 中令
| $ \begin{array}{l} \frac{{128}}{{3{\pi ^2}}}[2\gamma + 6\ln 2-\frac{{17}}{3}] = \sum\limits_{n = 0}^\infty [\frac{2}{{4n + 1}} + \psi (n + \frac{1}{2})-2\psi (n + 2)-\psi (n + 1)]\\ \times \frac{{(4n + 1)(\frac{1}{2})_{n -1}^2(\frac{1}{2})_n^2}}{{n{!^2}(n + 1){!^2}}}. \end{array} $ |
命题5.4 若
| $ \begin{array}{l} \frac{{16(k + 2)!}}{{{\pi ^2}(\frac{1}{2})_{k + 2}^3}}[3\psi (k + \frac{5}{2})-\psi (k + 3)] = \sum\limits_{n = 0}^\infty H (k + \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, n)\\ \times \frac{{(4n + 2k + 1){{(\frac{1}{2})}_{n + k}}(\frac{1}{2})_{n -1}^3}}{{n!(n + k + 1){!^3}}}. \end{array} $ | (28) |
证 明 在定理5.1中取
例17 在式(28) 中令
| $ \frac{{128}}{{{\pi ^2}}}[5-2\gamma-6\ln 2] = \sum\limits_{n = 0}^\infty [\frac{2}{{4n-1}} + \psi (n-\frac{1}{2})-3\psi (n + 1)]\frac{{(4n -1)(\frac{1}{2})_{n -1}^4}}{{n{!^4}}}. $ |
命题5.5 若
| $ \frac{{(k-2)!}}{{{\pi ^2}(\frac{1}{2})_{k-1}^2{{(\frac{1}{2})}_k}}} = \sum\limits_{n = 0}^\infty {\frac{{(4n + 2k + 1){{(\frac{1}{2})}_{n + k}}{{(\frac{1}{2})}_{n + 1}}(\frac{1}{2})_n^2}}{{n!(n + k-1)!(n + k){!^2}}}} . $ | (29) |
证 明 在文[20]的定理7.1中取
例18 在式(29) 中令
| $ \frac{{16}}{{3{\pi ^2}}} = \sum\limits_{n = 0}^\infty {\frac{{(4n + 5)(\frac{1}{2})_n^2{{(\frac{1}{2})}_{n + 1}}{{(\frac{1}{2})}_{n + 2}}}}{{n!(n + 1)!(n + 2){!^2}}}} . $ |
例19 在式(29) 中令
| $ \frac{{128}}{{135{\pi ^2}}} = \sum\limits_{n = 0}^\infty {\frac{{(4n + 7)(\frac{1}{2})_n^2{{(\frac{1}{2})}_{n + 1}}{{(\frac{1}{2})}_{n + 3}}}}{{n!(n + 2)!(n + 3){!^2}}}} . $ |
命题5.6 若
| $ \frac{{(k-3)!}}{{2{\pi ^2}(\frac{1}{2})_{k-1}^2{{(\frac{1}{2})}_{k-2}}}} = \sum\limits_{n = 0}^\infty {\frac{{(4n + 2k + 1){{(\frac{1}{2})}_{n + k}}{{(\frac{1}{2})}_n}(\frac{1}{2})_{n + 1}^2}}{{n!(n + k - 1){!^2}(n + k)!}}} . $ | (30) |
证 明 在文[20]的定理7.1中令
例20 在式(30) 中令
| $ \frac{{16}}{{9{\pi ^2}}} = \sum\limits_{n = 0}^\infty {\frac{{(4n + 7)(\frac{1}{2})_{n + 1}^2{{(\frac{1}{2})}_{n + 3}}{{(\frac{1}{2})}_n}}}{{n!(n + 3)!(n + 2){!^2}}}} . $ |
命题5.7 若
| $ \frac{{16(k + 2)!}}{{{\pi ^2}(\frac{1}{2})_{k + 2}^3}} = \frac{{(16k + 8){{(\frac{1}{2})}_k}}}{{(k + 1){!^3}}}-\sum\limits_{n = 1}^\infty {\frac{{(4n + 2k + 1){{(\frac{1}{2})}_{n + k}}(\frac{1}{2})_{n-1}^3}}{{n!(n + k + 1){!^3}}}} . $ | (31) |
证 明 在文[20]的定理7.1中令
例21 在式(31) 中取
| $ \frac{{128}}{{{\pi ^2}}} = 16-\sum\limits_{n = 1}^\infty {\frac{{(4n-1)(\frac{1}{2})_{n-1}^4}}{{n{!^4}}}} . $ |
命题5.8 若
| $ \begin{array}{l} \frac{{(k- 2)!}}{{{\pi ^2}(\frac{1}{2})_{k- 1}^2{{(\frac{1}{2})}_k}}}[\psi (k-1)-2\psi (k-\frac{1}{2}) - \psi (k + \frac{1}{2})]\\ = \sum\limits_{n = 0}^\infty H (k + \frac{1}{2}, -\frac{3}{2}, -\frac{1}{2}, -\frac{1}{2}, n)\frac{{(4n + 2k + 1){{(\frac{1}{2})}_{n + k}}{{(\frac{1}{2})}_{n + 1}}(\frac{1}{2})_n^2}}{{n!(n + k - 1)!(n + k){!^2}}}. \end{array} $ | (32) |
证 明 在定理5.1中令
例22 在式(32) 中取
| $ \begin{array}{l} \frac{{32}}{{3{\pi ^2}}}[\gamma + 3\ln 2-\frac{{10}}{3}] = \sum\limits_{n = 0}^\infty [\frac{2}{{4n + 5}} + \psi (n + \frac{5}{2})-\psi (n + 2)-2\psi (n + 3)]\\ \times \frac{{(4n + 5){{(\frac{1}{2})}_{n + 2}}{{(\frac{1}{2})}_{n + 1}}(\frac{1}{2})_n^2}}{{n!(n + 1)!(n + 2){!^2}}}. \end{array} $ |
命题5.9 若
| $ \begin{array}{l} \frac{{(k- 3)!}}{{2{\pi ^2}(\frac{1}{2})_{k- 1}^2{{(\frac{1}{2})}_{k- 2}}}}[\psi (k-2)-2\psi (k-\frac{1}{2}) - \psi (k - \frac{3}{2})]\\ = \sum\limits_{n = 0}^\infty H (k + \frac{1}{2}, -\frac{3}{2}, -\frac{3}{2}, -\frac{1}{2}, n)\frac{{(4n + 2k + 1){{(\frac{1}{2})}_{n + k}}(\frac{1}{2})_{n + 1}^2{{(\frac{1}{2})}_n}}}{{n!(n + k - 1){!^2}(n + k)!}}. \end{array} $ | (33) |
证 明 在定理5.1中令
例23 在式(33) 中取
| $ \begin{array}{l} \frac{{32}}{{9{\pi ^2}}}[\gamma + 3\ln 2-\frac{{11}}{3}] = \sum\limits_{n = 0}^\infty [\frac{2}{{4n + 7}} + \psi (n + \frac{7}{2})-\psi (n + 4)-2\psi (n + 3)]\\ \times \frac{{(4n + 7){{(\frac{1}{2})}_{n + 3}}(\frac{1}{2})_{n + 1}^2{{(\frac{1}{2})}_n}}}{{n!(n + 2){!^2}(n + 3)!}}. \end{array} $ |
命题5.10 若
| $ \begin{array}{l} \frac{{(k- 4)!}}{{4{\pi ^2}(\frac{1}{2})_{k- 2}^3}}[\psi (k-3)-3\psi (k-\frac{3}{2})]\\ = \sum\limits_{n = 0}^\infty H (k + \frac{1}{2}, -\frac{3}{2}, -\frac{3}{2}, -\frac{3}{2}, n)\frac{{(4n + 2k + 1){{(\frac{1}{2})}_{n + k}}(\frac{1}{2})_{n + 1}^3}}{{n!(n + k - 1){!^3}}}. \end{array} $ | (34) |
证 明 在定理5.1中取
例24 在式(34) 中令
| $ \frac{{32}}{{27{\pi ^2}}}[\gamma + 3\ln 2-4] = \sum\limits_{n = 0}^\infty [\frac{2}{{4n + 9}} + \psi (n + \frac{9}{2})-3\psi (n + 4)]\frac{{(4n + 9){{(\frac{1}{2})}_{n + 4}}(\frac{1}{2})_{n + 1}^3}}{{n!(n + 3){!^3}}}. $ |
| [1] | RAMANUJAN S. Modular equations and approximations to[J]. Quart J Math Oxford Ser, 1914, 45(2): 350-372. |
| [2] | BORWEIN J M, BORWEIN P B. Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity[M]. New York: Wiley, 1987. |
| [3] | CHUDNOVSKY D V, CHUDNOVSKY G V, Approximations and complex multiplication according to Ramanu-jan [C]//Proceedings of the Centenary Conference, Urbana-Champaign, 1987. Boston: Academic Press, 1988, 375-472. |
| [4] | BARUAH N D, BERNDT B C. Ramanujan's series for 1/π arising from his cubic and quartic theories of elliptic functions[J]. J Math Anal Appl, 2008, 341: 357-371. DOI:10.1016/j.jmaa.2007.10.011 |
| [5] | BARUAH N D, BERNDT B C. Eisenstein Series and Ramanujan-type series for 1/π[J]. Ramanujan J, 2010, 23: 17-44. DOI:10.1007/s11139-008-9155-8 |
| [6] | BARUAH N D, BERNDT B C, CHAN H H. Ramanujan's series for 1/π: A survey[J]. Amer Math Monthly, 2009, 116: 567-587. DOI:10.4169/193009709X458555 |
| [7] | BARUAH N D, NAYAK N. New hypergeometric-like series for 1/π2, arising from Ramanujan's theory of elliptic functions to alternative base 3[J]. Trans Amer Math Soc, 2011, 363: 887-900. DOI:10.1090/S0002-9947-2010-05180-3 |
| [8] | CHAN H H, CHAN S H, LIU Z G. Domb's numbers and Ramanujan-Sato type series for 1/π[J]. Adv in Math, 2004, 186: 396-410. DOI:10.1016/j.aim.2003.07.012 |
| [9] | CHAN H H, COOPER S, LIAW W C. The Rogers-Ramanujan continued fraction and a quintic iteration for 1/π[J]. Proc Amer Math Soc, 2007, 135(11): 3417-3425. DOI:10.1090/S0002-9939-07-09031-4 |
| [10] | CHAN H H, LIAW W C, TAN V. Ramanujan's class invariant n and a new class of series for 1/π[J]. J London Math Soc, 2001, 64(2): 93-106. |
| [11] | CHAN H H, LOO K L. Ramanujan's cubic continued revisited[J]. Acta Arith, 2007, 126: 305-313. DOI:10.4064/aa126-4-2 |
| [12] | CHAN H H, VERRILL H. The Apéry numbers, the Almkvist-Zudilin numbers and new series for 1/π[J]. Math Res Lett, 2009, 16: 405-420. DOI:10.4310/MRL.2009.v16.n3.a3 |
| [13] | CHAN H H, RUDILIN W. New representations for Apéry-like sequences 1/π[J]. Mathematika, 2010, 56: 107-117. DOI:10.1112/S0025579309000436 |
| [14] | CHU W. Dougall's bilateral 2H2 series and Ramanujan-like π formulas[J]. Math Comp, 2011, 80: 2223-2251. DOI:10.1090/S0025-5718-2011-02474-9 |
| [15] | COOPER S. Series and iterations for 1/π[J]. Acta Arith, 2010, 141: 33-58. DOI:10.4064/aa141-1-2 |
| [16] | GUILLERA J. Hypergeometric identities for 10 extended Ramanujan-type series[J]. Ramanujan J, 2008, 15: 219-234. DOI:10.1007/s11139-007-9074-0 |
| [17] | LEVRIE P. Using Fourier-Legendre expansions to derive series for 1/π and 1/π2[J]. Ramanujan J, 2010, 22: 221-230. DOI:10.1007/s11139-010-9222-9 |
| [18] | ROGERS M. New 5F4 hypergeometric transformations, three-variable Mahler measures and formulas for 1/π[J]. Ramanujan J, 2009, 18: 327-340. DOI:10.1007/s11139-007-9040-x |
| [19] | ZUDILIN W. More Ramanujan-type formulae for 1/π2[J]. Russian Math Surveys, 2007, 62(3): 634-636. DOI:10.1070/RM2007v062n03ABEH004420 |
| [20] | LIU Z G. A summation formula and Ramanujan type series[J]. J Math Anal App, 2012, 389: 1059-1065. DOI:10.1016/j.jmaa.2011.12.048 |
| [21] | ANDREWS G E, ASKEY R, ROY R. Special Functions[M]. Cambridge: Cambridge University Press, 1999. |

