文章快速检索     高级检索
  华东师范大学学报(自然科学版)  2018 Issue (1): 50-58  DOI: 10.3969/j.issn.1000-5641.2018.01.006
0

引用本文  

杨琰琰, 魏文龙, 黄志刚. 几类微分与差分方程组的亚纯解[J]. 华东师范大学学报(自然科学版), 2018, (1): 50-58. DOI: 10.3969/j.issn.1000-5641.2018.01.006.
YANG Yan-yan, WEI Wen-long, HUANG Zhi-gang. Meromorphic solutions of some type of system of differential and difference equations[J]. Journal of East China Normal University (Natural Science), 2018, (1): 50-58. DOI: 10.3969/j.issn.1000-5641.2018.01.006.

基金项目

国家自然科学基金(11001057);江苏省自然科学基金(BK2010234);苏州科技大学科研基金(xkq201405);苏州科技大学研究生科研创新项目(SKYCX16-001,SKYCX16-007)

第一作者

杨琰琰, 女, 硕士研究生, 研究方向为复分析.E-mail:1139269431@qq.com

通信作者

黄志刚, 男, 教授, 研究方向为复分析.E-mail:hzg@mail.usts.edu.cn

文章历史

收稿日期:2017-02-27
几类微分与差分方程组的亚纯解
杨琰琰, 魏文龙, 黄志刚     
苏州科技大学 数理学院, 江苏 苏州 215009
摘要:文章考察了差分方程组 $ \begin{eqnarray*} \begin{cases}f_1^n-p_1(z)f_2(z+c)=h_1(z), \ \\ f_2^n-p_2(z)f_1(z+c)=h_2(z) \end{cases}\end{eqnarray*} $ 亚纯解的性质,其中n ≥ 4,p1z)、p2z)是不为零的多项式,h1z),h2z)是整函数.应用值分布理论,得到了该方程组的解是唯一的.此外,文章还讨论了满足一些特殊类微分差分方程构成的方程组存在有限级亚纯解的条件.
关键词Nevanlinna理论    方程组    微分差分方程    亚纯解    
Meromorphic solutions of some type of system of differential and difference equations
YANG Yan-yan, WEI Wen-long, HUANG Zhi-gang    
College of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou Jiangsu 215009, China
Abstract: This article investigates some properties of meromorphic solutions of the type of system of differential-difference equations of the following form $ \begin{eqnarray*} \begin{cases}f_1^n-p_1(z)f_2(z+c)=h_1(z), \ \\ f_2^n-p_2(z)f_1(z+c)=h_2(z) \end{cases}\end{eqnarray*} $ where n ≥ 4, p1(z)、p2(z) are non-zero polynomials, and h1(z), h2(z) are entire functions. By using Nevanlinna theorem, we have obtained the solution of above equation is unique. We also discuss the conditions for several types of system of differential-difference equations if the systems of equations actually pose meromorphic solutions of finite order.
Key words: Nevanlinna theory    system of equations    differential-difference equation    meromorphic solution    
0 引言和结果

本文应用Nevanlinna理论及复域微分方程理论[1-2]中的标准记号, 用$\sigma(f)$表示$f(z)$的级, $T(r, f), m(r, f)$分别表示$f(z)$的Nevanlinna特征函数与平均值函数.

近年来, 杨重骏, Laine, 温志涛等人对一些特定形式的微分差分方程的解的情况进行了深入研究, 得出了许多有意义的结论.

[3]证明了当$n\geq 3$$h(z)$为整函数时, 非线性微分方程$L(f)-p(z)f^n(z)=h(z)$的有限级超越整函数解是唯一确定的, 除非$L(f)\equiv0$.其中$L(f)$是关于$f$的线性微分多项式.

Yang和Laine[4]在此基础上考虑了$h(z)$为亚纯函数时, 非线性微分方程$f^n+L(z, f)=h(z)$的有限级整函数解的情况, 这里$L(z, f)$是关于$f$的线性微分多项式且其系数为$f$的小函数.特别地, Yang和Laine证明了当$p(z), q(z)$为多项式时, 方程$f(z)^2+q(z)f(z+1)=p(z)$没有有限级的超越整函数解.

随后温志涛[5]对方程做了进一步改进, 研究了方程$f^n(z)+q(z)\text{e}^{Q(z)}f(z+c)=p(z)$, 其中$q(z), Q(z), p(z)$均为多项式, 且$n\geq2, c\in {\mathbb{C}} \backslash \{0\}$.证明了其每一个有限级整函数解$f$均满足$\sigma(f)=\text{deg} Q$, 并表示出了$f$的相应形式.

李海绸, 高凌云等人[6]从多个方程构成的方程组出发, 研究了方程组

$ \left\{ \begin{align} & \sum\limits_{j=1}^{n}{{{\alpha }_{j}}}(z)f_{1}^{({{\lambda }_{j1}})}(z+{{c}_{j}})={{R}_{2}}(z,{{f}_{2}}(z)), \\ & \sum\limits_{j=1}^{n}{{{\beta }_{j}}}(z)f_{2}^{({{\lambda }_{j2}})}(z+{{c}_{j}})={{R}_{1}}(r,{{f}_{1}}(z)) \\ \end{align} \right. $

的情况, 其中$\lambda_{ij}(i=1, 2;j=1, 2, \cdots, n)$是有限非负整数, $c_j(j=1, 2, \cdots, n)$是互不相同的非零复数, $\alpha_j(z), \beta_j(z)(j=1, 2, \cdots, n)$均为关于$f_i(z)(i=1, 2)$的小函数, 而$R_i(z, f_i(z))(i=1, 2)$为关于$f_i(z)$的有理函数, 且其系数均为$f_i(z)$的小函数.证明了有理函数$R_1, R_2$的度$d_1, d_2$$\lambda_1, \lambda_2$的关系为$d_1d_2\leq \lambda_1\lambda_2$, 其中$\lambda_i=\sum^n_{j=1}(\lambda_{ij}+1), i=1, 2$.

本文将考虑某些类微分差分方程构成的方程组.首先给出非线性差分方程$f^n-p(z)f(z+c)=h(z)$构成的方程组的超越整函数解是唯一确定的.

定理0.1  若$n\geq4, p_1(z), p_2(z)$是不为零的多项式, $h_1(z), h_2(z)$是整函数, 若$(f_1, f_2)$是方程组

$ \left\{ \begin{align} & f_{1}^{n}-{{p}_{1}}(z){{f}_{2}}(z+c)={{h}_{1}}(z), \\ & f_{2}^{n}-{{p}_{2}}(z){{f}_{1}}(z+c)={{h}_{2}}(z) \\ \end{align} \right. $ (1)

的有限级超越整函数解, 那么$(f_1, f_2)$是唯一确定的.

受到杨重骏, Laine和温志涛等人结果的启发, 我们对一些特定的微分差分方程组进行了研究, 得出了下面的定理0.2和定理0.3.

定理0.2   已知$n_i, k_i(i=1, 2)$为正整数, $p(z)$是一个不为零的多项式, $L_i(f)(i=1, 2)$是一个关于$f$的线性微分多项式, 即$L_i(f)=q_{i0}(z)+p_{i0}(z)f+p_{i1}(z)f'+\cdots+p_{k_i}(z)f^{(k_i)}(i=1, 2)$, 其中$q_{i0}(z)$为多项式, $p_{ij}(z)(i=1, 2; j=0, 1, 2, \cdots, k_i)$是不全为零的多项式, $h_i(z)$, $i=1, 2$, 为多项式, 若存在一组超越解, 满足非线性微分方程组

$ \left\{ \begin{align} & {{L}_{1}}({{f}_{1}})-p(z)f_{2}^{{{n}_{1}}}(z)={{h}_{1}}(z), \\ & {{L}_{2}}({{f}_{2}})-p(z)f_{1}^{{{n}_{2}}}(z)={{h}_{2}}(z), \\ \end{align} \right. $ (2)

则有$n_1n_2\leq d_1d_2$, 其中$d_i=\frac{(k_i+1)(k_i+2)}{2}, i=1, 2$.

定理0.3  已知$n\geq2$为整数, $c\in{{\mathbb{C}}\backslash\{0\}}$, $q_1$, $q_2$, $Q_1$, $ Q_2$, $p_1, p_2$均为多项式, 且$Q_1(z), Q_2(z)$不为常数, $q_i(z)\not\equiv0, i=1, 2$.若$(f_1, f_2)$是方程组

$ \left\{ \begin{align} & {{f}_{1}}{{(z)}^{n}}+{{q}_{1}}(z){{e}^{{{Q}_{1}}(z)}}{{f}_{2}}(z+c)={{p}_{1}}(z), \\ & {{f}_{2}}{{(z)}^{n}}+{{q}_{2}}(z){{e}^{{{Q}_{2}}(z)}}{{f}_{1}}(z+c)={{p}_{2}}(z), \\ \end{align} \right. $ (3)

的有限级整函数解, 则有$\sigma(f)=\deg Q$, 其中$\sigma(f)=\max\{\sigma(f_1), \sigma(f_2)\}, \;\deg Q=\max\{\text{deg} Q_1, \text{deg} Q_2\}$.

李海绸、高凌云等人考虑了两个方程构成的方程组的情况[6].若是$n$个方程构成的方程组, 是否有相似结论?本文也给出了答案.

定理0.4  已知$c_1, c_2, \cdots, c_n$是不完全相同的非零复数, 使得$(f_1, f_2, \cdots, f_n)$为方程组

$ \left\{ \begin{align} & \sum\limits_{j=1}^{n}{{{\alpha }_{1j}}}(z)f_{1}^{({{\lambda }_{1j}})}(z+{{c}_{j}})={{R}_{n}}(z,{{f}_{n}}(z)) \\ & \sum\limits_{j=1}^{n}{{{\alpha }_{2j}}}(z)f_{2}^{({{\lambda }_{2j}})}(z+{{c}_{j}})={{R}_{1}}(z,{{f}_{1}}(z)) \\ & \cdots \cdots \\ & \sum\limits_{j=1}^{n}{{{\alpha }_{nj}}}(z)f_{n}^{({{\lambda }_{nj}})}(z+{{c}_{j}})={{R}_{n-1}}(z,{{f}_{n-1}}(z)) \\ \end{align} \right. $ (4)

的超越亚纯解.其中$R_i(z, f_i(z)), i=1, 2, \cdots, n$, 是关于$f_i(z)$的有理函数, 且其系数为$f_i(z)$的小函数, 系数$\alpha_{ij}(z)(i=1, 2, \cdots, n;j=1, 2, \cdots, n), a_{ij}(z)(j=1, 2, \cdots, p_i;i=1, 2, \cdots, n)$$b_{ij}(z)(i=1, 2, \cdots, n;j=1, 2, \cdots, q_i)$是关于$f_i(z)(i=1, 2, \cdots, n)$的小函数, 令$\lambda_{ij}(i=1, 2, \cdots, n;j=1, 2, \cdots, n)$是有限非负整数, 定义

$ \begin{align*} d_i=\text{deg} R_i(z, f_i(z))=\max \{p_i, q_i\}, \lambda_i=\sum^n_{j=1}(\lambda_{ij}+1), i=1, 2, \cdots, n. \end{align*} $

$\rho(f_i)(i=1, 2, \cdots, n)$是有限的, 则有$d_1d_2\cdots d_n\leq\lambda_1\lambda_2\cdots\lambda_n$.

1 辅助引理

为了能够证明定理0.1-0.4,我们需要以下引理.

引理1.1[8]  若$f(z)$为复域内的亚纯函数, $\sigma=\sigma(f) < \infty, $$c$为一固定的非零常数.那么对任意的$\varepsilon>0, $

$ \begin{align*} m\Big(r, \frac{f(z+c)}{f(z)}\Big)+m\Big(r, \frac{f(z)}{f(z+c)}\Big)=O(r^{\sigma-1+\varepsilon}) +O(\log r). \end{align*} $

引理1.2[6]  若$f(z)$是超越亚纯函数, $k=1, 2, \cdots, n$.则有

$ \begin{align*} T(r, f^{(k)})\leq(k+1)T(r, f)+S(r, f). \end{align*} $

引理1.3[7]  已知$f(z)$是亚纯函数, 那么对所有关于$f$的不可约有理函数

$ \begin{align*} R(z, f(z))=\frac{P(z, f(z))}{Q(z, f(z))}=\frac{ \sum^p_{i=0}a_i(z)f^i}{\sum^q_{j=0}b_j(z)f^j}, \end{align*} $

其中$a_i(z), b_j(z)$是亚纯函数, 且满足

$ \begin{align*} &T(r, a_i)=S(r, f), i=0, 1, 2, \cdots, p, \\ &T(r, b_j)=S(r, f), j=0, 1, 2, \cdots, q. \end{align*} $

那么

$ \begin{align*} T(r, R(z, f))=\max\{p, q\}T(r, f)+S(r, f). \end{align*} $

引理1.4[8]  若$f(z)$是有限级的亚纯函数, 且$\rho=\rho(f), c$是一个固定的非零复数, 那么对于任意的$\varepsilon>0, $

$ \begin{align*} T(r, f(z+c))=T(r, f(z))+O(r^{\rho-1+\varepsilon})+O(\log r). \end{align*} $
2 定理的证明 2.1 定理0.1的证明

假设$(f_1, f_2), (g_1, g_2)$都是方程组(1)的一组有限级的超越整函数解.

情形1: $f_1(z)=g_1(z), f_2(z)\neq g_2(z)$.易知$f_1(z+c)=g_1(z+c)$, 把$(g_1, g_2)$代入方程(1), 用$f_1(z)$替换$g_1(z)$, 有

$ \left\{ \begin{align} & f_{1}^{n}(z)-{{p}_{1}}(z){{g}_{2}}(z+c)={{h}_{1}}(z), \\ & g_{2}^{n}(z)-{{p}_{2}}(z){{f}_{1}}(z+c)={{h}_{2}}(z). \\ \end{align} \right. $ (5)

比较方程组(1)、(5), 得$f_2(z+c)=g_2(z+c)$, 且$f_2^n(z)=g_2^n(z)$.可得$f_2=\eta_ig_2$, $\eta_i$为常数且$\eta_i^n=1$.则有$f_2(z+c)=\eta_ig_2(z+c)$, 所以$\eta_i=1$, 即$f_2(z)=g_2(z)$, 矛盾.

情形2: $f_1(z)\neq g_1(z), f_2(z)\neq g_2(z).$$(g_1, g_2)$代入方程组(1)中, 有

$ \left\{ \begin{align} &g_1^n-p_1(z)g_2(z+c)=h_1(z), \\ &g_2^n-p_2(z)g_1(z+c)=h_2(z). \end{align} \right. $ (6)

由方程组(1)、(6)易知

$ \left\{ \begin{align} &f_1^n-g_1^n=p_1(z)(f_2(z+c)-g_2(z+c)), \\ &f_2^n-g_2^n=p_2(z)(f_1(z+c)-g_1(z+c)). \end{align} \right. $

两边分别同除$f_1-g_1, f_2-g_2$, 得

$ \left\{ \begin{align} &\frac{f_1^n-g_2^n}{f_1-g_1}=p_1(z)\frac{f_2(z+c)-g_2(z+c)}{f_1-g_1}, \\ &\frac{f_2^n-g_2^n}{f_2-g_2}=p_2(z)\frac{f_1(z+c)-g_1(z+c)}{f_2-g_2}. \end{align} \right. $ (7)

$F=\frac{(f_2^n-g_2^n)(f_1^n-g_1^n)}{(f_1-g_1)(f_2-g_2)}, $由(7)式及引理1.1, 有

$ \begin{align*} m(r, F)&=m\Big(r, \frac{(f_2^n-g_2^n)(f_1^n-g_1^n)}{(f_1-g_1)(f_2-g_2)}\Big)\\ &=m\Big(r, p_1(z)p_2(z)\frac{(f_2(z+c)-g_2(z+c))(f_1(z+c)-g_1(z+c))}{(f_1-g_1)(f_2-g_2)}\Big)\\ &\leq m\Big(r, \frac{f_1(z+c)-g_1(z+c)}{f_1-g_1}\Big)+m\Big(r, \frac{f_2(z+c)-g_2(z+c)}{f_2-g_2}\Big) \\ & +m(r, p_1)+m(r, p_2)+O(\log r) \\ &\leq O(r^{\sigma(f_1-g_1)-1+\varepsilon})+O(r^{\sigma(f_2-g_2)-1+\varepsilon})+O(\log r). \end{align*} $

$S_\sigma(r)=O(r^{\sigma(f_1-g_1)-1+\varepsilon})+O(r^{\sigma(f_2-g_2)- 1+\varepsilon})+O(\log r)$, 因为$F=(f_1-\eta_1g_1)(f_2-\eta_1g_2)\cdots (f_1-\eta_{n-1}g_1)(f_2-\eta_{n-1}g_2)$是整函数, 则有$m(r, F)=T(r, F)$.若$F$是超越的, 则由第一基本定理显然有$\sum^{n-1}_{j=1}N(r, \frac{1}{f_i-\eta_jg_i})=N(r, \frac{1}{F})=S_\sigma(r)$成立.其中$i=1, 2, j=1, 2, \cdots, n-1, \eta_j$为满足$z^n=1$的除1以外的根.所以, 对$i=1, 2, j=1, 2, \cdots, n-1$, 有

$ \begin{align*} N\Big(r, \frac{1}{f_i-\eta_jg_i}\Big)=S_\sigma(r). \end{align*} $

进一步有

$ \begin{equation} N\Big(r, \frac{1}{\frac{f_i}{g_i}-\eta_j}\Big)=S_\sigma(r). \end{equation} $ (8)

又对$i=1, 2$, 有

$ \begin{equation} T(r, f_i-g_i)=T\Big(r, g_i\Big(\frac{f_i}{g_i}-1\Big)\Big)\leq T(r, g_i)+T\Big(r, \frac{f_i}{g_i}-1\Big). \end{equation} $ (9)

由第二基本定理以及(8)式可得

$ \begin{align*} T(r, f_i-g_i)\leq T(r, g_i)+S_\sigma(r). \end{align*} $

因为$F_i=\frac{f_i^n-g_i^n}{f_i-g_i}=(f_i-\eta_1g_i)\cdots(f_i-\eta_{n-1}g_i)=g_i^{n-1} (\frac{f_i}{g_i}-\eta_1)\cdots(\frac{f_i}{g_i}-\eta_{n-1})$, 所以有

$ \begin{align*} (n-1)T(r, g_i)\leq T\Big(r, \frac{f_i^n-g_i^n}{f_i-g_i}\Big)+T\left(r, \prod^{n-1}_{j=1} \left(\frac{1}{\frac{f_i}{g_i}-\eta_j}\right)\right) \end{align*} $

成立.因为$f_i, g_i$均为整函数, 易知$F_i(i=1, 2)$为整函数, 因此$T(r, F_i)=m(r, F_i), i=1, 2$.又由第一基本定理和(7)式, 并结合引理1.1, 有

$ \begin{align*} (n-1)T(r, g_i)\leq S_\sigma(r)+T\Big(r, \prod^{n-1}_{j=1} \Big(\frac{f_i}{g_i}-\eta_j\Big)\Big) +O(1). \end{align*} $

再次利用第二基本定理以及(8)式, 有

$ \begin{align*} (n-1)T(r, g_i)\leq S_\sigma(r). \end{align*} $

代入(9)式, 得$T(r, f_i-g_i)\leq S_\sigma(r)$.因为$F$是超越的, 由(7)式可知, $f_1-g_1$$f_2-g_2$中至少有一个是超越的.由于

$ \begin{align*} T(r, f_1-g_1)+T(r, f_2-g_2)\leq O(r^{\sigma(f_1-g_1)-1+\varepsilon})+ O(r^{\sigma(f_2-g_2)-1+\varepsilon})+O(\log r)=S_\sigma(r). \end{align*} $

易知存在某个$i(i=1, 2)$, 满足$T(r, f_i-g_i)\leq O(\log r)+O(r^{\sigma(f_i-g_i)-1+\varepsilon})$, 矛盾.所以$F$必为多项式.

那么, 当$F\equiv0$时, $f_2^n-g_2^n\equiv0$$f_1^n-g_1^n\equiv0$中至少有一个成立, 不妨设$g_1=\eta_i f_1$, $\eta_i$为常数且$\eta_i^n=1.$代入方程组(6), 有

$ \left\{ \begin{align} &\eta_i^nf_1^n-p_1g_2(z+c)=h_1(z), \\ &g_2^n-p_2\eta_if_1(z+c)=h_2(z). \end{align} \right. $ (10)

因为$\eta_i^n=1, $对比方程组(1), 易知

$ \begin{equation} f_2(z+c)=g_2(z+c). \end{equation} $ (11)

由方程组(1)和(6), 有

$ \left\{ \begin{align} &(f_2^n(z)-h_2(z))^n=(p_2(z)f_1(z+c))^n, \\ &(g_2^n(z)-h_2(z))^n=(p_2(z)g_1(z+c))^n. \end{align} \right. $ (12)

由前述$g_1=\eta_if_1$可知$f_1^n(z+c)=g_1^n(z+c)$成立, 代入上式得

$ \begin{align*} (f_2^n(z)-h_2(z))^n=(g_2^n(z)-h_2(z))^n. \end{align*} $

则有$f_2^n(z)-h_2(z)=\varphi _i(g_2^n(z)-h_2(z))$, $\varphi_i$为常数且$\varphi_i^n=1$.于是

$ \begin{align*} f_2^n(z+c)-h_2(z+c)=\varphi_i(g_2^n(z+c)-h_2(z+c)). \end{align*} $

结合(11)式得$\varphi_i=1, $$f_2^n=g_2^n.$由情形1的证明知, 必有$f_2(z)=g_2(z), $矛盾.

$F$是不为零的多项式时, 令

$ \begin{equation} F(z)=q(z)\not\equiv0. \end{equation} $ (13)

$n\geq4$时,

$ \begin{align*} F=(f_1-\eta_1g_1)(f_2-\eta_1g_2)(f_1-\eta_2g_1)(f_2-\eta_2g_2) \cdots (f_1-\eta_{n-1}g_1)(f_2-\eta_{n-1}g_2)=q(z). \end{align*} $

由于$q(z)$有有限多个零点, 所以每一个$f_j-\eta_ig_j(i=1, 2, \cdots, n-1;j=1, 2)$只有有限多个零点, 即$f_j/g_j-\eta_i(i=1, 2, \cdots, n-1;j=1, 2)$有有限多个零点.由Picard定理, 复域内的超越亚纯函数能取任意复数无穷多次, 最多两个例外.而$n\geq4$时, 这样的$\eta_i$至少三个, 所以$f_j/g_j$只能是有理函数.这是矛盾的, 从而定理得证.

2.2 定理0.2的证明

对方程组(2)的第一个式子取Nevanlina特征函数并结合引理(1.2), 得

$ \begin{align*} n_1T(r, f_2)&=T(r, L_1(f_1)-h_1(z))\\ &\leq T(r, L_1(f_1))+O(\log r)\\ &\leq \sum^{k_1}_{j=1}T(r, f_1^{(j)})+T(r, f_1)+O(\log r)\\ &\leq \frac{(k_1+1)(k_1+2)}{2}T(r, f_1)+k_1S(r, f_1)+O(\log r). \end{align*} $

$d_i=\frac{(k_i+1)(k_i+2)}{2}, $则有

$ \begin{equation} n_1T(r, f_2)\leq d_1T(r, f_1)+k_1S(r, f_1)+O(\log r). \end{equation} $ (14)

同理

$ \begin{equation} n_2T(r, f_1)\leq d_2T(r, f_2)+k_2S(r, f_2)+O(\log r). \end{equation} $ (15)

则将(14)式乘$d_2$, (15)式乘$n_1$, 有

$ \begin{align} &d_2n_1T(r, f_2)\leq d_1d_2T(r, f_1)+d_2k_1S(r, f_1)+O(\log r), \end{align} $ (16)
$ \begin{align} &n_1n_2T(r, f_1)\leq n_1d_2T(r, f_2)+n_1k_2S(r, f_2)+O(\log r). \end{align} $ (17)

由(16)、(17)式得

$ \begin{equation} n_1n_2T(r, f_1)\leq d_1d_2T(r, f_1)+d_2k_1S(r, f_1)+n_1k_2S(r, f_2)+O(\log r). \end{equation} $ (18)

同理, 将(14)式乘$n_2$, (15)式乘$d_1$, 有

$ \begin{equation} n_1n_2T(r, f_2)\leq d_1d_2T(r, f_2)+d_1k_2S(r, f_2)+n_2k_1S(r, f_1)+O(\log r). \end{equation} $ (19)

由(18)、(19)式得

$ \begin{align*} (n_1n_2-d_1d_2)(T(r, f_1)+T(r, f_2)) \leq(d_2k_1+n_2k_1)S(r, f_1)+(n_1k_2+d_1k_2)S(r, f_2)+O(\log r). \end{align*} $

因为$f_1, f_2$是超越的, 易知$n_1n_2\leq d_1d_2$, 得证.

2.3 定理0.3的证明

假设$(f_1, f_2)$为方程组(3)的一组整函数解, 且$\sigma(f_1) < \infty, \sigma(f_2) < \infty$.由引理1.1,

$ \begin{align*} nm(r, f_1)&=m(r, p_1(z)-q_1(z)f_2(z+c)\text{e}^{Q_1(z)})\\ &\leq m(r, p_1(z))+m(r, q_1(z))+m(r, f_2(z+c))+m(r, \text{e}^{Q_1(z)})+O(1)\\ &\leq m(r, \text{e}^{Q_1(z)})+m\Big(r, \frac{f_2(z+c)}{f_2(z)}\Big)+m(r, f_2(z))+O(\log r)\\ &\leq m(r, \text{e}^{Q_1(z)})+m(r, f_2(z))+O(r^{\sigma(f_2)-1+\varepsilon})+O(\log r), \end{align*} $

$ \begin{equation} nm(r, f_1)\leq m(r, \text{e}^{Q_1})+m(r, f_2)+O(r^{\sigma(f_2)-1+\varepsilon})+O(\log r). \end{equation} $ (20)

同理有

$ \begin{equation} nm(r, f_2)\leq m(r, \text{e}^{Q_2})+m(r, f_1)+O(r^{\sigma(f_1)-1+\varepsilon})+O(\log r). \end{equation} $ (21)

由(20)、(21)式得

$ \begin{align*} (n^2-1)m(r, f_2)\leq m(r, \text{e}^{Q_1})+nm(r, \text{e}^{Q_2})+nO(r^{\sigma(f_1)-1+\varepsilon})+O(r^{\sigma(f_2)-1+\varepsilon})+(n+1)O(\log r). \end{align*} $

且当$n\geq2$时, 有$\sigma(f_2)\leq\max\{\text{deg}Q_1(z), \text{deg}Q_2(z)\}=\text{deg}Q$.同理有$\sigma(f_1)\leq\max\{\text{deg}Q_1, \text{deg}Q_2\}=\text{deg}Q$.即$\sigma(f)=\max\{\sigma(f_1), \sigma(f_2)\}\leq \text{deg}Q.$

又由方程组(3), 有

$ \begin{align*} m(r, e^{Q_1})&=m\Big(r, \frac{p_1(z)-f_1(z)^{n}}{q_1(z)f_2(z+c)}\Big)\\ &\leq m\Big(r, \frac{p_1(z)}{q_1(z)f_2(z+c)}\Big)+m\Big(r, \frac{f_1(z)^n}{q_1(z)f_2(z+c)}\Big)+O(1)\\ &\leq m\Big(r, \frac{1}{f_2(z+c)}\Big)+m\Big(r, \frac{f_1^n(z)}{f_2(z+c)}\Big)+O(\log r)\\ &\leq2m\Big(r, \frac{f_2(z)}{f_2(z+c)}\Big)+2m\Big(r, \frac{1}{f_2(z)}\Big)+nm(r, f_1) +O(\log r)\\ &\leq n T(r, f_1)+2T(r, f_2)+O(r^{\sigma(f_2)-1+\varepsilon})+O(\log r), \end{align*} $

$ \begin{equation} m(r, \text{e}^{Q_1})\leq nT(r, f_1)+2T(r, f_2)+O(r^{\sigma(f_2)-1+\varepsilon}) +O(\log r). \end{equation} $

同理有

$ \begin{equation} m(r, \text{e}^{Q_2})\leq nT(r, f_2)+2T(r, f_1)+O(r^{\sigma(f_1)-1+\varepsilon})+O(\log r). \end{equation} $ (23)

由(22)、(23)式得

$ \begin{align*} m(r, \text{e}^{Q_1})+m(r, \text{e}^{Q_2})\leq(n+2)[T(r, f_1) +T(r, f_2)]+O(r^{\sigma(f_1)-1+\varepsilon}) +O(r^{\sigma(f_2)-1+\varepsilon})+O(\log r). \end{align*} $

即deg$Q=\max\{\text{deg}Q_1, \text{deg}Q_2\}\leq\max\{\sigma(f_1), \sigma(f_2)\}=\sigma(f).$因此有$\sigma(f)=\text{deg}Q, $得证.

2.4 定理0.4的证明

已知方程组(4)中系数$\alpha_{ij}\;(i=1, 2, \cdots, n;j=1, 2, \cdots, n), a_{ij}\;(i=1, 2, \cdots, n;j=1, 2, \cdots, p_i)$$b_{ij}\;(i=1, 2, \cdots, n;j=1, 2, \cdots, q_i)$是关于$f_i(z), i=1, 2, \cdots, n, $的小函数, 令$(f_1, f_2, \cdots, f_n)$是方程组(4)的有限级亚纯解, 由Nevanlinna理论及引理1.2-1.4, 对于所有的$r$, 除了一个有限的对数测度外, 都有

$ \begin{align*} d_nT(r, f_n)&=T(r, R_n)+S(r, f_n)\\ &=T\Big(r, \sum^n_{j=1}\alpha_{1j}(z)f_1^{(\lambda_{1j})}(z+c_j)\Big)+S(r, f_n)\\ &\leq\sum^n_{j=1}T(r, f_1^{(\lambda_{1j})}(z+c_j))+S(r, f_n)\\ &\leq\sum^n_{j=1}(\lambda_{1j}+1)T(r, f_1(z+c_j))+S(r, f_n)\\ &=\lambda_1T(r, f_1)+O(r^{\rho(f_1)-1+\varepsilon})+O(\log r)+S(r, f_n). \end{align*} $

$\rho(f)=\max\{\rho_i\}, i=1, 2, \cdots, n, $则有

$ \begin{equation} (d_n+o(1))T(r, f_n)\leq \lambda_1T(r, f_1)+O(r^{\rho-1+\varepsilon})+O(\log r). \end{equation} $ (24)

同理可得

$ \begin{align} &(d_1+o(1))T(r, f_1)\leq\lambda_2T(r, f_2)+O(r^{\rho-1+\varepsilon}) +O(\log r), \notag\\ &\cdots\cdots\\ &(d_{n-1}+o(1))T(r, f_{n-1})\leq \lambda_nT(r, f_n)+O(r^{\rho-1+\varepsilon})+O(\log r).\notag \end{align} $ (25)

联立(24)、(25)式得

$ \begin{align*} (d_{n-1}+o(1))T(r, f_{n-1})\leq &\frac{\lambda_1\lambda_2 \cdots\lambda_n}{(d_1+o(1))\cdots (d_{n-2}+o(1))(d_n+o(1))}T(r, f_{n-1})\notag\\ &+M[O(r^{\rho-1+\varepsilon})+O(\log r)], \end{align*} $

其中$M=1+\frac{\lambda_n}{d_n+o(1)}+\frac{\lambda_1\lambda_n}{(d_1 +o(1))(d_n+o(1))}+\cdots+\frac{\lambda_1 \cdots\lambda_{n-2}\lambda_n}{(d_1+o(1)) \cdots(d_{n-2}+o(1))(d_n+o(1))}$, 又因为$d_i, i=1, 2, \cdots, n$, 均为正数, 易知$d_1d_2\cdots d_n\leq\lambda_1\lambda_2\cdots\lambda_n$, 定理得证.

参考文献
[1] 杨乐. 值分布论及其新研究[M]. 北京: 科学出版社, 1982.
[2] 高仕安, 陈宗煊. 线性微分方程的复振荡理论[M]. 武汉: 华中科技大学出版社, 1996.
[3] YANG C C. On entire solutions of a certain type of nonlinear differential equation[J]. Bull Austral Math Soc, 2001, 64(3): 377-380. DOI:10.1017/S0004972700019845
[4] YANG C C, LAINE I. On analogies between nonlinear difference and differential equations[J]. Proc Japan Acad Ser A Math Sci, 2010, 86(1): 10-14. DOI:10.3792/pjaa.86.10
[5] WEN Z T, JANNE H, LAINE I. Exponential polynomials as solutions of certain nonlinear difference equation[J]. Acta Mathematica Sinica, 2012, 28(7): 1295-1306. DOI:10.1007/s10114-012-1484-2
[6] LI H C, GAO L Y. Meromorphic solutions of a type of system of complex differential-difference equations[J]. Acta Mathematica Sinica, 2015, 35B(1): 195-206.
[7] LAINE I. Nevanlinna Theory and Complex Differential Equations[M]. Berlin: Walter de Gruyter, 1993.
[8] CHIANG Y M, FENG S J. On the Nevanlinna characteristic of f(z +η) and difference equation in the complex plane[J]. Ramanujan J, 2008, 16(1): 105-129. DOI:10.1007/s11139-007-9101-1