一般超几何级数和基本超几何级数, 均属于特殊函数范畴, 与组合数学密切相关, 在数论、理论物理及计算机代数等领域具有重要的理论意义和应用价值.
对任意复变量
| $ \begin{align*} (x)_n=\frac{\Gamma(x+n)}{\Gamma(x)}, \end{align*} $ |
其中
| $ \begin{align*} \Gamma(x)=\int_{0}^{\infty}t^{x-1}{\rm{e}}^{-t}{\rm{d}}t \quad\mbox{和}\quad{\mathfrak{R}}(x)>0. \end{align*} $ |
当
| $ \begin{align*} (x)_0=1, \quad(x)_n=\Gamma(x+n)/\Gamma(x) =x(x+1)\cdots(x+n-1), \quad n=1, 2, \cdots. \end{align*} $ |
对于所有复数
| $ \begin{align} \Gamma(x)=\lim\limits_{n\to\infty}\frac{n!n^{x-1}}{(x)_n}. \end{align} $ | (1) |
基于上述升阶乘的定义, 并沿用Baile[2]和Slater[3]的记号, 一般超几何级数可定义如下.
定义0.1 设
| $ \begin{align*}{_{1+r}F_s} \left[ \begin{array}{l}{a_0, a_1, \cdots, a_r}\\ { b_1, \cdots, b_s}\end{array}\Bigg|z\right] =\sum\limits_{k=0}^{\infty} \:\: \frac{(a_0)_k(a_1)_k\cdots(a_r)_k}{(b_1)_k(b_2)_k\cdots(b_s)_k}\cdot \frac{z^k}{k!}. \end{align*} $ |
基本超几何级数(简称
定义0.2 设
| $ \begin{align*}{_{1+r}\phi_s} \left[ \begin{array}{l}{a_0, a_1, \cdots, a_r}\\ { b_1, \cdots, b_s}\end{array}\Bigg|q;z\right] =\sum\limits_{n=0}^{\infty}\big\{(-1)^nq^{(^n_2)}\big\}^{s-r} \frac{(a_0;q)_n(a_1;q)_n\cdots(a_r;q)_n} {(q;q)_n(b_1;q)_n(b_2;q)_n\cdots(b_s;q)_n} z^n, \end{align*} $ |
其中
| $ (x;q)_0=1, \quad (x;q)_n =(1-x)(1-xq)\cdots(1-xq^{n-1}), \quad n=1, 2, 3, \cdots. $ |
因
| $ (x;q)_\infty=\prod\limits_{k=0}^{\infty}(1-q^kx) \quad\text{和}\quad (x;q)_n =(x;q)_\infty/(xq^n;q)_\infty. $ |
为了书写方便, 我们通常会使用下面的紧凑记号
| $ \begin{align*} \left[ \begin{array}{c} {\alpha, \beta, \cdots, \gamma}\\ {A, B, \cdots, C}\end{array} \right]_n&=\frac{(\alpha)_{n}(\beta)_{n}\cdots(\gamma)_{n}} {(A)_{n}(B)_{n}\cdots(C)_{n}}, \\ \left[ \begin{array}{c}{\alpha, \beta, \cdots, \gamma}\\ {A, B, \cdots, C}\end{array}\Big|q\right]_n &=\frac{(\alpha;q)_{n}(\beta;q)_{n}\cdots(\gamma;q)_{n}} {(A;q)_{n}(B;q)_{n}\cdots(C;q)_{n}}, \\ \Gamma\left[ \begin{array}{c}{\alpha, \beta, \cdots, \gamma}\\ {A, B, \cdots, C}\end{array}\right] &=\frac{\Gamma(\alpha)\Gamma(\beta)\cdots\Gamma(\gamma)} {\Gamma(A)\Gamma(B)\cdots\Gamma(C)}. \end{align*} $ |
到目前为止, 我们熟知的证明和发现一般超几何级数恒等式的方法主要有级数重排、微分算子、组合反演、围线积分以及Abel分部求和引理等.这些方法在具体应用时各有其侧重.比如, 组合反演技巧[5]从已有公式出发, 主要适用于证明终止型的封闭性求和公式; 微分算子和围线积分法主要针对具有良好解析性质的级数; Abel分部求和引理[6-8]是经典分析工具, 在超几何级数恒等式证明中运用灵活, 从级数本身出发, 对终止型和非终止型的求和公式或变换公式都适用, 关键和难点是找到适用的"差分偶".
1977年, Gosper在给Askey的一封信中给出了一系列"看起来奇怪的算式"但并未给出证明, 之后Gessel和Stanton[9]证明了其中几乎所有等式的终止型情况, 除了下面的
| $ \begin{align} & {_7F_6}\left[ \begin{array}{ccccccc} a, &\frac{1}{2}+a, & b, &1-b, & c, & \frac{1+2a}{3}-c, &1+\frac{a}{2}\\ &\frac{1}{2}, & 1+\frac{2a-b}{3}, &\frac{2+2a+b}{3}, & 3c, &2a+1-3c, &\frac{a}{2}\end{array}\Bigg|1\right]\notag\\ =&\frac{2\sin{(\frac{1+b}{3}\pi)}}{\sqrt{3}} \Gamma\left[ \begin{array}{cccccc}\frac{1}{3}+c, &\frac{2}{3}+c, &1+\frac{2a-b}{3}, & \frac{2+2a+b}{3}, &\frac{2+2a}{3}-c, &1+\frac{2a}{3}-c\\ \frac{2+2a}{3}, &1+\frac{2a}{3}, &\frac{1+b}{3}+c, & \frac{2-b}{3}+c, &\frac{2+2a+b}{3}-c, &1+ \frac{2a-b}{3}-c\end{array}\right]. \end{align} $ | (2) |
1990年, Gasper-Rahman给出了上述等式的
| $ \begin{align} &\sum\limits_{k=0}^{\infty}\frac{1-q^{4k}a^2}{1-a^2} \left[ \begin{array}{c}{b, q/b}\\{qa^2/c^3, c^3} \end{array}\Bigg|q\right]_k \frac{(a;q)_{2k}}{(q;q)_{2k}} \left[ \begin{array}{l} {c^3, \;qa^2/c^3}\\ {q^3a^2/b, q^2a^2b}\end{array}\Bigg|q^3\right]_kq^k\notag\\ &-\left[ \begin{array}{c}{b, \:q/b, qa^2}\\ {q, c^3, qa^2/c^3}\end{array}\Bigg|q\right]_\infty \left[ \begin{array}{c}{c^3, \:\;q^3, \:\;qa^2/c^3, \:\;q^2c^6/a^2}\\ {bc^3/a^2, q^2a^2b, q^3a^2/b, \:qc^3/a^2b}\end{array}\Bigg|q^3\right]_\infty {_2\phi_1}\left[ \begin{array}{c} {bc^3/a^2, qc^3/a^2b}\\ {\qquad\;\; q^2c^6/a^2}\end{array}\Bigg|{q^3;q^3}\right]\notag\\ =&\left[ \begin{array}{c}{q^2a^2, q^3a^2, c^3/a^2, qc^3/a^2, qbc^3, qb, q^2/b, q^2c^3/b}\\ {q, q^2, qc^3, q^2c^3, q^3a^2/b, q^2a^2b, bc^3/a^2, qc^3/a^2b}\end{array}\Bigg|q^3\right]_\infty. \end{align} $ | (3) |
同时, 在文献[10]中, Gasper和Rahman还建立了另外一个与式(3)类似的
| $ \begin{align} &\sum\limits_{k=0}^{\infty} \frac{1-q^{4k}a^2}{1-a^2} \left[ \begin{array}{c}{b, q^2/b}\\ {qa^2/c^3, c^3/q}\end{array}\Bigg|q\right]_k \frac{(a^2/q;q)_{2k}}{(q^2;q)_{2k}} \left[ \begin{array}{c}{c^3, q^2a^2/c^3}\\ {q^3a^2/b, qa^2b}\end{array}\Bigg|q^3\right]_kq^k\notag\\ =&\left[ \begin{array}{c}{bq^2, q^4/b, bc^3/q, qc^3/b, c^3/a^2, c^3q^2/a^2, a^2q, a^2q^3}\\ {q^2, q^4, c^3/q, c^3q, bc^3/a^2, q^3a^2/b, a^2bq, c^3q^2/a^2b} \end{array}\Bigg|q^3\right]_\infty\notag\\ &-\left[ \begin{array}{c}{b, bq, bq^2, q^2/b, q^3/b, q^4/b, a^2/q, a^2q, a^2q^3, c^3/a^2, c^6q/a^2}\\ {q^2, q^4, c^3/{q}, c^3q, {a^2}/{c^3}, {a^2q}/{c^3}, {c^3q^3}/{a^2}, {c^3q^2}/{a^2b}, {a^2q^3}/{b}, a^2bq, {bc^3}/{a^2}} \end{array}\Bigg|q^3\right]_\infty\notag\\ & \times {_2\phi_1}\left[ \begin{array}{c}{{bc^3}/{a^2}, {q^2c^3}/{a^2b}}\\ {{qc^6}/{a^2}}\end{array}\Bigg|q^3;q^3\right], \end{align} $ | (4) |
它可以看作下述一般超几何级数求和公式的
| $ \begin{align} &{_7F_6}\left[ \begin{array}{ccccccc}\frac{a-1}{2}, &\frac{a}{2}, &b, &2-b, & c, &\frac{2+a}{3}-c, &1+\frac{a}{4}\\ &\frac{3}{2}, &1+\frac{a-b}{3}, & \frac{1+a+b}{3}, &1+a-3c, &3c-1, &\frac{a}{4} \end{array}\Bigg|1\right]\notag\\ =&\Gamma \left[ \begin{array}{cccccccc} \frac{2}{3}, &\frac{4}{3}, &c-\frac{1}{3}, & \frac{1}{3}+c, & \frac{1+a+b}{3}, &1+\frac{a-b}{3}, &\frac{1+a}{3}-c, &1+\frac{a}{3}-c\\ \frac{2+b}{3}, &\frac{4-b}{3}, &\frac{1-b}{3}+c, &\frac{b-1}3+c, &\frac{1+a}{3}, & 1+\frac{a}{3}, &\frac{1+a+b}{3}-c, &1+\frac{a-b}{3}-c\end{array}\right]. \end{align} $ | (5) |
最近, Wang等人[11]利用Abel分部求和引理证明了下面的非终止型
| $ \begin{align}&{_7F_6}\left[ \begin{array}{ccccccc}\frac{a}{3}, &1+\frac{a}{4}, &b, &\frac{d}{2}, & \frac{1+d}{2}, &1+a-b-d, &\frac{1+a-d}{3}\\ &\frac{a}{4}, &1+\frac{a-b}{3}, &1+\frac{a-d}{2}, & \frac{1+a-d}{2}, &\frac{2+b+d}{3}, &d\end{array}\Bigg|1\right]\notag\\ =&\Gamma\left[ \begin{array}{cccccc}1+\frac{a-b}{3}, &\frac{b+d+2}{3}, &\frac{1+2d-a}{3}, & 2+a-d, &1+\frac{b}{3}, &\frac{4+a-b-d}{3}\\ 1+\frac{a}{3}, &\frac{1+b+2d-a}{3}, &\frac{2+d-b}{3}, & 1+b, &2+a-b-d, &\frac{4+a-d}{3}\end{array}\right]. \end{align} $ | (6) |
考虑到式(6)与式(2)和式(5)结构相似, 所以作者自然考虑到式(6)是否有类似于式(3)和式(4)的\,
引理0.1 (Abel分部求和引理)对于任意复数序列
| $ [AB]_{+}:=\lim\limits_{n\to +\infty}A_nB_{n+1} $ |
存在, 则有
|
其中
|
这里我们假定上述两个无穷级数中的一个是收敛的.
证明 根据向后差分算子的定义, 我们有
| $ \begin{align*}\sum\limits_{k=0}^{n}B_k\bigtriangledown A_k =\sum\limits_{k=0}^{n}B_k\big\{A_{k}-A_{k-1}\big\} =\sum\limits_{k=0}^{n}A_kB_{k} -\sum\limits_{k=0}^{n}A_{k-1}B_k. \end{align*} $ |
将上式右端求和下标
|
最后令
注 在利用Abel分部求和引理处理
定理1.1 (非终止型三次基本超几何级数变换) 对于任意复参数
| $ \begin{align*} &\sum\limits_{k=0}^{\infty}\frac{1-q^{4k}a}{1-a} \left[ \begin{array}{c}{b, {qa}/{bc}}\\ {q, c}\end{array}\Bigg|q\right]_k \frac{(c;q)_{2k}}{(qa/c;q)_{2k}} \left[ \begin{array}{c}{a, {qa}/{c}}\\ {{q^3a}/{b}, q^2bc}\end{array}\Bigg|q^3\right]_kq^k\\ =&\left[ \begin{array}{c}{{qb}, {q^2a}/{bc}}\\ {q^2a/c, q}\end{array}\Bigg|q\right]_{\infty} \left[ \begin{array}{c}{q^3a, {q^4a}/{c}, qbc^2/a}\\ {{q^3a}/{b}, {q^2bc}, q^3b}\end{array}\Bigg|q^3\right]_{\infty} {_2\phi_1}\left[ \begin{array}{c}{qa/bc, q^2a/c^2}\\ {q^4a/bc} \end{array}\Bigg|q^3;qbc^2/a\right]. \end{align*} $ |
证明 令
| $ \begin{align*} \Omega(a, b, c) =\sum\limits_{k=0}^{\infty}\frac{1-q^{4k}a}{1-a} \left[ \begin{array}{c}{b, {qa}/{bc}}\\ {q, c}\end{array}\Bigg|q\right]_k \frac{(c;q)_{2k}}{(qa/c;q)_{2k}} \left[ \begin{array}{c}{a, {qa}/{c}}\\ {{q^3a}/{b}, q^2bc}\end{array}\Bigg|{q^3}\right]_k q^k. \end{align*} $ |
对于序列
| $ \begin{align*} A_k&=\left[ \begin{array}{c}{q^2c, {qb}}\\ {{q^2a}/{c}, {q^3a}/{b}}\end{array}\Bigg|{q^2}\right]_k \left[ \begin{array}{c}{{q^2a}/{bc}}\\{q}\end{array}\Bigg|{q}\right]_k \left[ \begin{array}{c}{{q^3a}}\\{{q^2bc}}\end{array}\Bigg|{q^3}\right]_k, \\ B_k&=\left[ \begin{array}{c}{qc, {q^3a}/{b}}\\ {{qa}/{c}, {b}/{q}}\end{array}\Bigg|{q^2}\right]_k \left[ \begin{array}{c}{b/q}\\{qc}\end{array}\Bigg|{q}\right]_k \left[ \begin{array}{c}{{qa}/{c}}\\ {{q^3a}/{b}}\end{array}\Bigg|{q^3}\right]_k, \end{align*} $ |
我们不难分别计算它们的下述差分
|
由此可以确定
| $ \begin{align*} \Omega(a, b, c)=\sum\limits_{k=0}^{\infty}B_k\bigtriangledown{A}_k. \end{align*} $ |
注意到
| $ A_{-1}B_0=0, $ |
| $ \begin{align} R(a, b, c):=[AB]_{+}=\lim\limits_{n\to +\infty}A_nB_{n+1} =\left[ \begin{array}{c}{{b}, {q^2a}/{bc}}\\{q^2a/c, q}\end{array}\Bigg|{q}\right]_{\infty} \left[ \begin{array}{c}{q^3a, {q^4a}/{c}}\\ {{q^3a}/{b}, {bcq^2}}\end{array}\Bigg|{q^3}\right]_{\infty}, \end{align} $ | (7) |
根据引理0.1, 我们可以将
|
(8) |
其中
|
在上式右端, 将
|
(9) |
结合式(7)、(8)以及(9), 我们得到关于
| $ \begin{align*} \Omega(a, b, c)=\Omega(q^6a, b, q^3c) \frac{b(q^3a;q^3)_2(1-q^2c/b)(1-q^2a/bc)(1-q^3a/bc)} {(q^3a/b;q^3)_2(1-q^2a/c)(1-q^3a/c)(1-q^2bc)}&+R(a, b, c). \end{align*} $ |
将上述迭代关系迭代
| $ \begin{align} \Omega(a, b, c)=&\Omega(q^{6m}a, b, q^{3m}c) \left[ \begin{array}{c}{q^3a}\\{q^3a/b}\end{array}\Bigg|{q^3}\right]_{2m} \left[ \begin{array}{c}{q^2c/b, q^2a/bc, q^3a/bc}\\{q^2a/c, q^3a/c, q^2bc} \end{array}\Bigg|{q^3}\right]_mb^m\notag\\ &+\sum\limits_{k=0}^{m-1}R(q^{6k}a, b, q^{3k}c) \left[ \begin{array}{c}{q^3a}\\{q^3a/b}\end{array}\Bigg|{q^3}\right]_{2k} \left[ \begin{array}{c}{q^2c/b, q^2a/bc, q^3a/bc}\\ {q^2a/c, q^3a/c, q^2bc}\end{array}\Bigg|{q^3}\right]_kb^k, \end{align} $ | (10) |
根据式(7)中
| $ \begin{align*} & R(q^{6k}a, b, q^{3k}c) =\left[ \begin{array}{c}{{b}, {q^{3k+2}a}/{bc}}\\{q^{2+3k}a/c, q}\end{array}\Bigg|{q}\right]_{\infty} \left[ \begin{array}{c}{q^{3+6k}a, {q^{4+3k}a}/{c}}\\{{q^{3+6k}a}/{b}, {bcq^{2+3k}}}\end{array}\Bigg|{q^3}\right]_{\infty}\\ &=\left[ \begin{array}{c}{{b}, {q^2a}/{bc}}\\{q^2a/c, q}\end{array}\Bigg|{q}\right]_{\infty} \left[ \begin{array}{c}{q^3a, {q^4a}/{c}}\\{{q^3a}/{b}, {bcq^2}}\end{array}\Bigg|{q^3}\right]_{\infty} \left[ \begin{array}{c}{q^2a/c}\\{q^2a/bc}\end{array}\Bigg|{q}\right]_{3k} \left[ \begin{array}{c}{q^3a/b}\\{q^3a}\end{array}\Bigg|{q^3}\right]_{2k} \left[ \begin{array}{c}{q^2bc}\\{q^4a/c}\end{array}\Bigg|{q^3}\right]_k, \end{align*} $ |
并代入式(10)中, 我们得到
| $ \begin{align*} \Omega(a, b, c)=& \Omega(q^{6m}a, b, q^{3m}c) \left[ \begin{array}{c}{q^3a}\\{q^3a/b}\end{array}\Bigg|{q^3}\right]_{2m} \left[ \begin{array}{c}{q^2c/b, q^2a/bc, q^3a/bc}\\{q^2a/c, q^3a/c, q^2bc}\end{array}\Bigg|{q^3}\right]_mb^m\\ &+\left[ \begin{array}{c}{{b}, {q^2a}/{bc}}\\{q^2a/c, q}\end{array}\Bigg|{q}\right]_{\infty} \left[ \begin{array}{c}{q^3a, {q^4a}/{c}}\\{{q^3a}/{b}, {bcq^2}}\end{array}\Bigg|{q^3}\right]_{\infty} \sum\limits_{k=0}^{m-1} \left[ \begin{array}{c}{q^2c/b}\\{q^4a/bc}\end{array}\Bigg|{q^3}\right]_kb^k. \end{align*} $ |
当
| $ \begin{align} \Omega(a, b, c)=\left[ \begin{array}{c}{{b}, {q^2a}/{bc}}\\{q^2a/c, q}\end{array}\Bigg|{q}\right]_{\infty} \left[ \begin{array}{c}{q^3a, {q^4a}/{c}}\\{{q^3a}/{b}, {bcq^2}}\end{array}\Bigg|{q^3}\right]_{\infty} \sum\limits_{k=0}^{\infty}\left[ \begin{array}{c}{q^2c/b}\\{q^4a/bc}\end{array}\Bigg|{q^3}\right]_kb^k. \end{align} $ | (11) |
注意到, 根据Heine第三变换(详见文献[4, Ⅲ. 3]), 有
| $ \begin{align*} {_2\phi_1}\left[ \begin{array}{c}{a, b}\\{c}\end{array}\Bigg|{q;z}\right] =\frac{(abz/c;q)_{\infty}}{(z;q)_{\infty}} {_2\phi_1}\left[ \begin{array}{c}{c/a, c/b}\\{c}\end{array}\Bigg|{q;abz/c}\right], \end{align*} $ |
式(11)右端的级数可重新整理为
| $ \begin{align*} \sum\limits_{k=0}^{\infty}\left[ \begin{array}{c}{q^2c/b}\\{q^4a/bc}\end{array}\Bigg|{q^3}\right]_kb^k =\frac{(qbc^2/a;q^3)_{\infty}}{(b;q^3)_{\infty}} {_2\phi_1}\left[ \begin{array}{c}{qa/bc, q^2a/c^2}\\{q^4a/bc}\end{array}\Bigg|{q^3;qbc^2/a}\right]. \end{align*} $ |
当
在定理1.1中, 将
| $ \begin{align*}_2F_1\left[ \begin{array}{c}{a, b}\\{c}\end{array}\Bigg|1\right] =\Gamma\left[ \begin{array}{c}{c, c-a-b}\\{c-a, c-b}\end{array}\right], \end{align*} $ |
我们便得到式(6)中非终止型
另外, 令
| $ \begin{align*}_2\phi_1\left[ \begin{array}{c}{a, b}\\{qa/b}\end{array}\Bigg|{q^3;-q/b}\right] =(-q;q)_{\infty}\frac{(qa;q^2)_{\infty}(q^2a/b^2;q^2)_{\infty}} {(qa/b;q)_{\infty}(-q/b;q)_{\infty}}, \end{align*} $ |
于是, 我们得到一个有趣的非终止基本超几何级数求和公式.
推论1.1 当复参数
| $ \begin{align*} &\sum\limits_{k=0}^{\infty}\frac{1-q^{4k}b^2}{1-b^2}\cdot \frac{(b^2;q^2)_k(-q;q)_{2k}(b^4;q^6)_k} {(q^2;q^2)_k(-b^2;q)_{2k}(q^6b^2;q^6)_k}q^k\\ =&\left[ \begin{array}{c}{qb, -qb}\\{-qb^2, q}\end{array}\Bigg|q\right]_{\infty} \left[ \begin{array}{c}{q^3b^2, -q^3b^2, -q^3}\\ {q^3b, -q^3b, q^3b}\end{array}\Bigg|q^3\right]_{\infty} \left[ \begin{array}{c}{q^3b^2, q^6}\\{-q^3b, -q^6b}\end{array}\Bigg|q^6\right]_{\infty}. \end{align*} $ |
| [1] |
ANDREWS G E, ASKEY R, ROY R. Special Functions[M]. Cambridge: Cambridge University Press, 2000.
|
| [2] |
BAILEY W N. Generalized Hypergeometric Series[M]. Cambridge: Cambridge University Press, 1935.
|
| [3] |
SLATER L J. Generalized Hypergeometric Functions[M]. Cambridge: Cambridge University Press, 1966.
|
| [4] |
GASPER G, RAHMAN M. Basic Hypergeometric Series[M]. 2nd ed. Cambridge: Cambridge University Press.
|
| [5] |
CHU W. Inversion techniques and combinatorial identity:A unified treatment for the 7F6-series identities[J]. Collect Math, 1994, 45: 13-43. |
| [6] |
CHU W, WANG X Y. Abel's lemma on summation by parts and terminating q-series identities[J]. Numer Algorithms, 2008, 49(1/4): 105-128. |
| [7] |
WANG C Y, CHEN X J. New proof for a nonterminating cubic hypergeometric series identity of Gasper-Rahman[J]. Journal of Nanjing University (Mathematical Biquarterly), 2015, 32: 38-45. |
| [8] |
WANG C Y. New transformation for the partial sum of a cubic q-series[J]. Journal of East China Normal University (Natural science), 2015, 6: 46-52. |
| [9] |
GESSEL I, STANTON D. Strange evaluations of hypergeometric series[J]. SIAM J Math Anal, 1982, 13: 295-308. DOI:10.1137/0513021 |
| [10] |
GASPER G, RAHMAN M. An indefinite bibasic summation formula and some quadratic, cubic and quartic summation and transformation formulas[J]. Canad J Math, 1990, 42: 1-27. DOI:10.4153/CJM-1990-001-5 |
| [11] |
WANG C Y, DAI J J, MEZÖ I. A nonterminating 7F6-series evaluation[J]. Integral Transforms and Special Functions, 2018, 29(9): 719-724. DOI:10.1080/10652469.2018.1492571 |
| [12] |
BAILEY W N. A note on certain q-identities[J]. Quart J Math (Oxford), 1941, 12: 173-175. |
| [13] |
DAUM J A. The basic analogue of Kummer's theorem[J]. Bull Amer Math Soc, 1942, 48: 711-713. DOI:10.1090/S0002-9904-1942-07764-0 |


