文章快速检索     高级检索
  华东师范大学学报(自然科学版)  2019 Issue (3): 55-62  DOI: 10.3969/j.issn.1000-5641.2019.03.007
0

引用本文  

陈婷, 王琛颖. 一个非终止7F6级数求和公式的q-模拟[J]. 华东师范大学学报(自然科学版), 2019, (3): 55-62. DOI: 10.3969/j.issn.1000-5641.2019.03.007.
CHEN Ting, WANG Chen-ying. A q-analogy of a nonterminating 7F6-series summation[J]. Journal of East China Normal University (Natural Science), 2019, (3): 55-62. DOI: 10.3969/j.issn.1000-5641.2019.03.007.

基金项目

山东省自然科学基金(ZR2017QA012)

第一作者

陈婷, 女, 硕士研究生, 研究方向为组合数学.E-mail:tchen_nuist@163.com

通信作者

王琛颖, 女, 副教授, 研究方向为组合数学.E-mail:cywang@nuist.edu.cn

文章历史

收稿日期:2018-07-21
一个非终止7F6级数求和公式的q-模拟
陈婷 , 王琛颖     
南京信息工程大学 数学与统计学院, 南京 210044
摘要:利用"带余项的"Abel分部求和引理建立一个基本超几何级数变换,其可以看作一个已知非终止三次7F6-级数求和公式的q-模拟.
关键词基本超几何级数    一般超几何级数    三次超几何级数    Abel分部求和引理    
A q-analogy of a nonterminating 7F6-series summation
CHEN Ting , WANG Chen-ying     
School of Mathematics & Statistics, Nanjing University of Information Science & Technology, Nanjing 210044, China
Abstract: The modified Abel lemma on summation by parts with a "remainder term" was employed to establish a nonterminating basic hypergeometric series transformation which can be seen as a q-analogy of a known 7F6-series summation formula.
Keywords: basic hypergeometric series    generalized hypergeometric series    cubic hypergeometric series    the Abel lemma on summation by parts    
0 引言

一般超几何级数和基本超几何级数, 均属于特殊函数范畴, 与组合数学密切相关, 在数论、理论物理及计算机代数等领域具有重要的理论意义和应用价值.

对任意复变量$x$和任意整数$n$, $x$$n$次升阶乘可定义为

$ \begin{align*} (x)_n=\frac{\Gamma(x+n)}{\Gamma(x)}, \end{align*} $

其中$\Gamma$-函数是由下面的Euler积分给出的

$ \begin{align*} \Gamma(x)=\int_{0}^{\infty}t^{x-1}{\rm{e}}^{-t}{\rm{d}}t \quad\mbox{和}\quad{\mathfrak{R}}(x)>0. \end{align*} $

$n$为自然数时, 上述升阶乘退化为大家熟知的升阶乘

$ \begin{align*} (x)_0=1, \quad(x)_n=\Gamma(x+n)/\Gamma(x) =x(x+1)\cdots(x+n-1), \quad n=1, 2, \cdots. \end{align*} $

对于所有复数$x\neq-1, -2, \cdots$, $\Gamma$-函数[1]还可表示为

$ \begin{align} \Gamma(x)=\lim\limits_{n\to\infty}\frac{n!n^{x-1}}{(x)_n}. \end{align} $ (1)

基于上述升阶乘的定义, 并沿用Baile[2]和Slater[3]的记号, 一般超几何级数可定义如下.

定义0.1  设$\{a_i\}_{i=0}^r$$\{b_j\}_{j=1}^{s}$为两组复数序列, 且对所有的$j=1, 2, \cdots, s$都有$b_j\neq-m\, (m$为任意非负整数).那么以$z$为自变量的非终止型一般超几何级数定义为

$ \begin{align*}{_{1+r}F_s} \left[ \begin{array}{l}{a_0, a_1, \cdots, a_r}\\ { b_1, \cdots, b_s}\end{array}\Bigg|z\right] =\sum\limits_{k=0}^{\infty} \:\: \frac{(a_0)_k(a_1)_k\cdots(a_r)_k}{(b_1)_k(b_2)_k\cdots(b_s)_k}\cdot \frac{z^k}{k!}. \end{align*} $

基本超几何级数(简称$q$-级数)是一般超几何级数的推广, 沿用Gasper[4]的记号, 其定义如下.

定义0.2  设$\{a_i\}_{i=0}^r$$\{b_j\}_{j=1}^{s}$为两组复数序列, 复数$q$满足$|q|<1$, 且对所有的$j=1, 2, \cdots, s$都有$b_j\neq q^{-m} \ (m$为任意非负整数).那么以$z$为自变量的非终止型基本超几何级数定义为

$ \begin{align*}{_{1+r}\phi_s} \left[ \begin{array}{l}{a_0, a_1, \cdots, a_r}\\ { b_1, \cdots, b_s}\end{array}\Bigg|q;z\right] =\sum\limits_{n=0}^{\infty}\big\{(-1)^nq^{(^n_2)}\big\}^{s-r} \frac{(a_0;q)_n(a_1;q)_n\cdots(a_r;q)_n} {(q;q)_n(b_1;q)_n(b_2;q)_n\cdots(b_s;q)_n} z^n, \end{align*} $

其中

$ (x;q)_0=1, \quad (x;q)_n =(1-x)(1-xq)\cdots(1-xq^{n-1}), \quad n=1, 2, 3, \cdots. $

$|q|<1$, 故有两个无穷乘积表达式

$ (x;q)_\infty=\prod\limits_{k=0}^{\infty}(1-q^kx) \quad\text{和}\quad (x;q)_n =(x;q)_\infty/(xq^n;q)_\infty. $

为了书写方便, 我们通常会使用下面的紧凑记号

$ \begin{align*} \left[ \begin{array}{c} {\alpha, \beta, \cdots, \gamma}\\ {A, B, \cdots, C}\end{array} \right]_n&=\frac{(\alpha)_{n}(\beta)_{n}\cdots(\gamma)_{n}} {(A)_{n}(B)_{n}\cdots(C)_{n}}, \\ \left[ \begin{array}{c}{\alpha, \beta, \cdots, \gamma}\\ {A, B, \cdots, C}\end{array}\Big|q\right]_n &=\frac{(\alpha;q)_{n}(\beta;q)_{n}\cdots(\gamma;q)_{n}} {(A;q)_{n}(B;q)_{n}\cdots(C;q)_{n}}, \\ \Gamma\left[ \begin{array}{c}{\alpha, \beta, \cdots, \gamma}\\ {A, B, \cdots, C}\end{array}\right] &=\frac{\Gamma(\alpha)\Gamma(\beta)\cdots\Gamma(\gamma)} {\Gamma(A)\Gamma(B)\cdots\Gamma(C)}. \end{align*} $

到目前为止, 我们熟知的证明和发现一般超几何级数恒等式的方法主要有级数重排、微分算子、组合反演、围线积分以及Abel分部求和引理等.这些方法在具体应用时各有其侧重.比如, 组合反演技巧[5]从已有公式出发, 主要适用于证明终止型的封闭性求和公式; 微分算子和围线积分法主要针对具有良好解析性质的级数; Abel分部求和引理[6-8]是经典分析工具, 在超几何级数恒等式证明中运用灵活, 从级数本身出发, 对终止型和非终止型的求和公式或变换公式都适用, 关键和难点是找到适用的"差分偶".

1977年, Gosper在给Askey的一封信中给出了一系列"看起来奇怪的算式"但并未给出证明, 之后Gessel和Stanton[9]证明了其中几乎所有等式的终止型情况, 除了下面的$_7F_6$-级数求和公式

$ \begin{align} & {_7F_6}\left[ \begin{array}{ccccccc} a, &\frac{1}{2}+a, & b, &1-b, & c, & \frac{1+2a}{3}-c, &1+\frac{a}{2}\\ &\frac{1}{2}, & 1+\frac{2a-b}{3}, &\frac{2+2a+b}{3}, & 3c, &2a+1-3c, &\frac{a}{2}\end{array}\Bigg|1\right]\notag\\ =&\frac{2\sin{(\frac{1+b}{3}\pi)}}{\sqrt{3}} \Gamma\left[ \begin{array}{cccccc}\frac{1}{3}+c, &\frac{2}{3}+c, &1+\frac{2a-b}{3}, & \frac{2+2a+b}{3}, &\frac{2+2a}{3}-c, &1+\frac{2a}{3}-c\\ \frac{2+2a}{3}, &1+\frac{2a}{3}, &\frac{1+b}{3}+c, & \frac{2-b}{3}+c, &\frac{2+2a+b}{3}-c, &1+ \frac{2a-b}{3}-c\end{array}\right]. \end{align} $ (2)

1990年, Gasper-Rahman给出了上述等式的$q$-模拟(参见文献[10, eq(1.8)])

$ \begin{align} &\sum\limits_{k=0}^{\infty}\frac{1-q^{4k}a^2}{1-a^2} \left[ \begin{array}{c}{b, q/b}\\{qa^2/c^3, c^3} \end{array}\Bigg|q\right]_k \frac{(a;q)_{2k}}{(q;q)_{2k}} \left[ \begin{array}{l} {c^3, \;qa^2/c^3}\\ {q^3a^2/b, q^2a^2b}\end{array}\Bigg|q^3\right]_kq^k\notag\\ &-\left[ \begin{array}{c}{b, \:q/b, qa^2}\\ {q, c^3, qa^2/c^3}\end{array}\Bigg|q\right]_\infty \left[ \begin{array}{c}{c^3, \:\;q^3, \:\;qa^2/c^3, \:\;q^2c^6/a^2}\\ {bc^3/a^2, q^2a^2b, q^3a^2/b, \:qc^3/a^2b}\end{array}\Bigg|q^3\right]_\infty {_2\phi_1}\left[ \begin{array}{c} {bc^3/a^2, qc^3/a^2b}\\ {\qquad\;\; q^2c^6/a^2}\end{array}\Bigg|{q^3;q^3}\right]\notag\\ =&\left[ \begin{array}{c}{q^2a^2, q^3a^2, c^3/a^2, qc^3/a^2, qbc^3, qb, q^2/b, q^2c^3/b}\\ {q, q^2, qc^3, q^2c^3, q^3a^2/b, q^2a^2b, bc^3/a^2, qc^3/a^2b}\end{array}\Bigg|q^3\right]_\infty. \end{align} $ (3)

同时, 在文献[10]中, Gasper和Rahman还建立了另外一个与式(3)类似的$q$-级数变换

$ \begin{align} &\sum\limits_{k=0}^{\infty} \frac{1-q^{4k}a^2}{1-a^2} \left[ \begin{array}{c}{b, q^2/b}\\ {qa^2/c^3, c^3/q}\end{array}\Bigg|q\right]_k \frac{(a^2/q;q)_{2k}}{(q^2;q)_{2k}} \left[ \begin{array}{c}{c^3, q^2a^2/c^3}\\ {q^3a^2/b, qa^2b}\end{array}\Bigg|q^3\right]_kq^k\notag\\ =&\left[ \begin{array}{c}{bq^2, q^4/b, bc^3/q, qc^3/b, c^3/a^2, c^3q^2/a^2, a^2q, a^2q^3}\\ {q^2, q^4, c^3/q, c^3q, bc^3/a^2, q^3a^2/b, a^2bq, c^3q^2/a^2b} \end{array}\Bigg|q^3\right]_\infty\notag\\ &-\left[ \begin{array}{c}{b, bq, bq^2, q^2/b, q^3/b, q^4/b, a^2/q, a^2q, a^2q^3, c^3/a^2, c^6q/a^2}\\ {q^2, q^4, c^3/{q}, c^3q, {a^2}/{c^3}, {a^2q}/{c^3}, {c^3q^3}/{a^2}, {c^3q^2}/{a^2b}, {a^2q^3}/{b}, a^2bq, {bc^3}/{a^2}} \end{array}\Bigg|q^3\right]_\infty\notag\\ & \times {_2\phi_1}\left[ \begin{array}{c}{{bc^3}/{a^2}, {q^2c^3}/{a^2b}}\\ {{qc^6}/{a^2}}\end{array}\Bigg|q^3;q^3\right], \end{align} $ (4)

它可以看作下述一般超几何级数求和公式的$q$-模拟:

$ \begin{align} &{_7F_6}\left[ \begin{array}{ccccccc}\frac{a-1}{2}, &\frac{a}{2}, &b, &2-b, & c, &\frac{2+a}{3}-c, &1+\frac{a}{4}\\ &\frac{3}{2}, &1+\frac{a-b}{3}, & \frac{1+a+b}{3}, &1+a-3c, &3c-1, &\frac{a}{4} \end{array}\Bigg|1\right]\notag\\ =&\Gamma \left[ \begin{array}{cccccccc} \frac{2}{3}, &\frac{4}{3}, &c-\frac{1}{3}, & \frac{1}{3}+c, & \frac{1+a+b}{3}, &1+\frac{a-b}{3}, &\frac{1+a}{3}-c, &1+\frac{a}{3}-c\\ \frac{2+b}{3}, &\frac{4-b}{3}, &\frac{1-b}{3}+c, &\frac{b-1}3+c, &\frac{1+a}{3}, & 1+\frac{a}{3}, &\frac{1+a+b}{3}-c, &1+\frac{a-b}{3}-c\end{array}\right]. \end{align} $ (5)

最近, Wang等人[11]利用Abel分部求和引理证明了下面的非终止型$_7F_6$-超几何级数求和公式

$ \begin{align}&{_7F_6}\left[ \begin{array}{ccccccc}\frac{a}{3}, &1+\frac{a}{4}, &b, &\frac{d}{2}, & \frac{1+d}{2}, &1+a-b-d, &\frac{1+a-d}{3}\\ &\frac{a}{4}, &1+\frac{a-b}{3}, &1+\frac{a-d}{2}, & \frac{1+a-d}{2}, &\frac{2+b+d}{3}, &d\end{array}\Bigg|1\right]\notag\\ =&\Gamma\left[ \begin{array}{cccccc}1+\frac{a-b}{3}, &\frac{b+d+2}{3}, &\frac{1+2d-a}{3}, & 2+a-d, &1+\frac{b}{3}, &\frac{4+a-b-d}{3}\\ 1+\frac{a}{3}, &\frac{1+b+2d-a}{3}, &\frac{2+d-b}{3}, & 1+b, &2+a-b-d, &\frac{4+a-d}{3}\end{array}\right]. \end{align} $ (6)

考虑到式(6)与式(2)和式(5)结构相似, 所以作者自然考虑到式(6)是否有类似于式(3)和式(4)的\, $q$-模拟.本文旨在利用"带余项的"Abel分部求和引理建立一般超几何级数恒等式(6)的$q$-模拟.

引理0.1  (Abel分部求和引理)对于任意复数序列$\{A_k\}$$\{B_k\}$, 若极限

$ [AB]_{+}:=\lim\limits_{n\to +\infty}A_nB_{n+1} $

存在, 则有

其中$\bigtriangledown$分别为向后和向前差分算子

这里我们假定上述两个无穷级数中的一个是收敛的.

证明  根据向后差分算子的定义, 我们有

$ \begin{align*}\sum\limits_{k=0}^{n}B_k\bigtriangledown A_k =\sum\limits_{k=0}^{n}B_k\big\{A_{k}-A_{k-1}\big\} =\sum\limits_{k=0}^{n}A_kB_{k} -\sum\limits_{k=0}^{n}A_{k-1}B_k. \end{align*} $

将上式右端求和下标$k$替换为$k+1$, 则有

最后令$n\to+\infty$, 引理得证.

  在利用Abel分部求和引理处理$q$-级数时, 差分偶$A_k, B_k$的选择至关重要.虽然差分偶选定之后, 对于它们的差分以及极限的计算都是很平凡的, 但要寻找合适的差分偶却不是一件容易的事, $A_k$$B_k$中大部分因子都是级数原有的, 但为了使差分后的能表示成"线性因子的商", 有时需要我们添加合适的因子, 这需要反复尝试才有可能成功.

1 主要定理及证明

定理1.1 (非终止型三次基本超几何级数变换)  对于任意复参数$a, b, c, $$|b|<1$, $|qbc^2/a|<1$时(注意级数的分母不能出现$q^{-m}, \ m\in \mathbb{N}_0)$, 有下面的变换关系成立

$ \begin{align*} &\sum\limits_{k=0}^{\infty}\frac{1-q^{4k}a}{1-a} \left[ \begin{array}{c}{b, {qa}/{bc}}\\ {q, c}\end{array}\Bigg|q\right]_k \frac{(c;q)_{2k}}{(qa/c;q)_{2k}} \left[ \begin{array}{c}{a, {qa}/{c}}\\ {{q^3a}/{b}, q^2bc}\end{array}\Bigg|q^3\right]_kq^k\\ =&\left[ \begin{array}{c}{{qb}, {q^2a}/{bc}}\\ {q^2a/c, q}\end{array}\Bigg|q\right]_{\infty} \left[ \begin{array}{c}{q^3a, {q^4a}/{c}, qbc^2/a}\\ {{q^3a}/{b}, {q^2bc}, q^3b}\end{array}\Bigg|q^3\right]_{\infty} {_2\phi_1}\left[ \begin{array}{c}{qa/bc, q^2a/c^2}\\ {q^4a/bc} \end{array}\Bigg|q^3;qbc^2/a\right]. \end{align*} $

证明  令

$ \begin{align*} \Omega(a, b, c) =\sum\limits_{k=0}^{\infty}\frac{1-q^{4k}a}{1-a} \left[ \begin{array}{c}{b, {qa}/{bc}}\\ {q, c}\end{array}\Bigg|q\right]_k \frac{(c;q)_{2k}}{(qa/c;q)_{2k}} \left[ \begin{array}{c}{a, {qa}/{c}}\\ {{q^3a}/{b}, q^2bc}\end{array}\Bigg|{q^3}\right]_k q^k. \end{align*} $

对于序列$\{A_k\}$, $\{B_k\}$, 其中

$ \begin{align*} A_k&=\left[ \begin{array}{c}{q^2c, {qb}}\\ {{q^2a}/{c}, {q^3a}/{b}}\end{array}\Bigg|{q^2}\right]_k \left[ \begin{array}{c}{{q^2a}/{bc}}\\{q}\end{array}\Bigg|{q}\right]_k \left[ \begin{array}{c}{{q^3a}}\\{{q^2bc}}\end{array}\Bigg|{q^3}\right]_k, \\ B_k&=\left[ \begin{array}{c}{qc, {q^3a}/{b}}\\ {{qa}/{c}, {b}/{q}}\end{array}\Bigg|{q^2}\right]_k \left[ \begin{array}{c}{b/q}\\{qc}\end{array}\Bigg|{q}\right]_k \left[ \begin{array}{c}{{qa}/{c}}\\ {{q^3a}/{b}}\end{array}\Bigg|{q^3}\right]_k, \end{align*} $

我们不难分别计算它们的下述差分

由此可以确定

$ \begin{align*} \Omega(a, b, c)=\sum\limits_{k=0}^{\infty}B_k\bigtriangledown{A}_k. \end{align*} $

注意到

$ A_{-1}B_0=0, $
$ \begin{align} R(a, b, c):=[AB]_{+}=\lim\limits_{n\to +\infty}A_nB_{n+1} =\left[ \begin{array}{c}{{b}, {q^2a}/{bc}}\\{q^2a/c, q}\end{array}\Bigg|{q}\right]_{\infty} \left[ \begin{array}{c}{q^3a, {q^4a}/{c}}\\ {{q^3a}/{b}, {bcq^2}}\end{array}\Bigg|{q^3}\right]_{\infty}, \end{align} $ (7)

根据引理0.1, 我们可以将$\Omega$-级数重新表达为

(8)

其中

在上式右端, 将$k$$k+1$代换, 则有

(9)

结合式(7)、(8)以及(9), 我们得到关于$\Omega$级数的带余项的递归关系

$ \begin{align*} \Omega(a, b, c)=\Omega(q^6a, b, q^3c) \frac{b(q^3a;q^3)_2(1-q^2c/b)(1-q^2a/bc)(1-q^3a/bc)} {(q^3a/b;q^3)_2(1-q^2a/c)(1-q^3a/c)(1-q^2bc)}&+R(a, b, c). \end{align*} $

将上述迭代关系迭代$m$次, 得

$ \begin{align} \Omega(a, b, c)=&\Omega(q^{6m}a, b, q^{3m}c) \left[ \begin{array}{c}{q^3a}\\{q^3a/b}\end{array}\Bigg|{q^3}\right]_{2m} \left[ \begin{array}{c}{q^2c/b, q^2a/bc, q^3a/bc}\\{q^2a/c, q^3a/c, q^2bc} \end{array}\Bigg|{q^3}\right]_mb^m\notag\\ &+\sum\limits_{k=0}^{m-1}R(q^{6k}a, b, q^{3k}c) \left[ \begin{array}{c}{q^3a}\\{q^3a/b}\end{array}\Bigg|{q^3}\right]_{2k} \left[ \begin{array}{c}{q^2c/b, q^2a/bc, q^3a/bc}\\ {q^2a/c, q^3a/c, q^2bc}\end{array}\Bigg|{q^3}\right]_kb^k, \end{align} $ (10)

根据式(7)中$R$的表达式, 将$R(q^{6k}a, b, q^{3k}c)$中的$k$分离出来

$ \begin{align*} & R(q^{6k}a, b, q^{3k}c) =\left[ \begin{array}{c}{{b}, {q^{3k+2}a}/{bc}}\\{q^{2+3k}a/c, q}\end{array}\Bigg|{q}\right]_{\infty} \left[ \begin{array}{c}{q^{3+6k}a, {q^{4+3k}a}/{c}}\\{{q^{3+6k}a}/{b}, {bcq^{2+3k}}}\end{array}\Bigg|{q^3}\right]_{\infty}\\ &=\left[ \begin{array}{c}{{b}, {q^2a}/{bc}}\\{q^2a/c, q}\end{array}\Bigg|{q}\right]_{\infty} \left[ \begin{array}{c}{q^3a, {q^4a}/{c}}\\{{q^3a}/{b}, {bcq^2}}\end{array}\Bigg|{q^3}\right]_{\infty} \left[ \begin{array}{c}{q^2a/c}\\{q^2a/bc}\end{array}\Bigg|{q}\right]_{3k} \left[ \begin{array}{c}{q^3a/b}\\{q^3a}\end{array}\Bigg|{q^3}\right]_{2k} \left[ \begin{array}{c}{q^2bc}\\{q^4a/c}\end{array}\Bigg|{q^3}\right]_k, \end{align*} $

并代入式(10)中, 我们得到

$ \begin{align*} \Omega(a, b, c)=& \Omega(q^{6m}a, b, q^{3m}c) \left[ \begin{array}{c}{q^3a}\\{q^3a/b}\end{array}\Bigg|{q^3}\right]_{2m} \left[ \begin{array}{c}{q^2c/b, q^2a/bc, q^3a/bc}\\{q^2a/c, q^3a/c, q^2bc}\end{array}\Bigg|{q^3}\right]_mb^m\\ &+\left[ \begin{array}{c}{{b}, {q^2a}/{bc}}\\{q^2a/c, q}\end{array}\Bigg|{q}\right]_{\infty} \left[ \begin{array}{c}{q^3a, {q^4a}/{c}}\\{{q^3a}/{b}, {bcq^2}}\end{array}\Bigg|{q^3}\right]_{\infty} \sum\limits_{k=0}^{m-1} \left[ \begin{array}{c}{q^2c/b}\\{q^4a/bc}\end{array}\Bigg|{q^3}\right]_kb^k. \end{align*} $

$|b|<1$时, 令$m \rightarrow +\infty$, 得

$ \begin{align} \Omega(a, b, c)=\left[ \begin{array}{c}{{b}, {q^2a}/{bc}}\\{q^2a/c, q}\end{array}\Bigg|{q}\right]_{\infty} \left[ \begin{array}{c}{q^3a, {q^4a}/{c}}\\{{q^3a}/{b}, {bcq^2}}\end{array}\Bigg|{q^3}\right]_{\infty} \sum\limits_{k=0}^{\infty}\left[ \begin{array}{c}{q^2c/b}\\{q^4a/bc}\end{array}\Bigg|{q^3}\right]_kb^k. \end{align} $ (11)

注意到, 根据Heine第三变换(详见文献[4, Ⅲ. 3]), 有

$ \begin{align*} {_2\phi_1}\left[ \begin{array}{c}{a, b}\\{c}\end{array}\Bigg|{q;z}\right] =\frac{(abz/c;q)_{\infty}}{(z;q)_{\infty}} {_2\phi_1}\left[ \begin{array}{c}{c/a, c/b}\\{c}\end{array}\Bigg|{q;abz/c}\right], \end{align*} $

式(11)右端的级数可重新整理为

$ \begin{align*} \sum\limits_{k=0}^{\infty}\left[ \begin{array}{c}{q^2c/b}\\{q^4a/bc}\end{array}\Bigg|{q^3}\right]_kb^k =\frac{(qbc^2/a;q^3)_{\infty}}{(b;q^3)_{\infty}} {_2\phi_1}\left[ \begin{array}{c}{qa/bc, q^2a/c^2}\\{q^4a/bc}\end{array}\Bigg|{q^3;qbc^2/a}\right]. \end{align*} $

$|qbc^2/a|<1$时, 该级数收敛, 将其代入式(11)中便得到定理中的变换公式.

在定理1.1中, 将$a, b, c$替换为$q^{a}, q^{b}, q^{c}$, 然后令$q\to 1$并利用Gauss公式(参见[3, P.243]), 得

$ \begin{align*}_2F_1\left[ \begin{array}{c}{a, b}\\{c}\end{array}\Bigg|1\right] =\Gamma\left[ \begin{array}{c}{c, c-a-b}\\{c-a, c-b}\end{array}\right], \end{align*} $

我们便得到式(6)中非终止型$_7F_6$-级数求和公式.

另外, 令$a=b^2$, $c=-q$, 定理1.1右端的$_2\phi_1$级数可以根据Bail[12]和Daum[13]的下述公式(详见文献[4, eq(1.8.1)])求和

$ \begin{align*}_2\phi_1\left[ \begin{array}{c}{a, b}\\{qa/b}\end{array}\Bigg|{q^3;-q/b}\right] =(-q;q)_{\infty}\frac{(qa;q^2)_{\infty}(q^2a/b^2;q^2)_{\infty}} {(qa/b;q)_{\infty}(-q/b;q)_{\infty}}, \end{align*} $

于是, 我们得到一个有趣的非终止基本超几何级数求和公式.

推论1.1  当复参数$b$满足$|q^3|<|b|<1$时, 有

$ \begin{align*} &\sum\limits_{k=0}^{\infty}\frac{1-q^{4k}b^2}{1-b^2}\cdot \frac{(b^2;q^2)_k(-q;q)_{2k}(b^4;q^6)_k} {(q^2;q^2)_k(-b^2;q)_{2k}(q^6b^2;q^6)_k}q^k\\ =&\left[ \begin{array}{c}{qb, -qb}\\{-qb^2, q}\end{array}\Bigg|q\right]_{\infty} \left[ \begin{array}{c}{q^3b^2, -q^3b^2, -q^3}\\ {q^3b, -q^3b, q^3b}\end{array}\Bigg|q^3\right]_{\infty} \left[ \begin{array}{c}{q^3b^2, q^6}\\{-q^3b, -q^6b}\end{array}\Bigg|q^6\right]_{\infty}. \end{align*} $
参考文献
[1]
ANDREWS G E, ASKEY R, ROY R. Special Functions[M]. Cambridge: Cambridge University Press, 2000.
[2]
BAILEY W N. Generalized Hypergeometric Series[M]. Cambridge: Cambridge University Press, 1935.
[3]
SLATER L J. Generalized Hypergeometric Functions[M]. Cambridge: Cambridge University Press, 1966.
[4]
GASPER G, RAHMAN M. Basic Hypergeometric Series[M]. 2nd ed. Cambridge: Cambridge University Press.
[5]
CHU W. Inversion techniques and combinatorial identity:A unified treatment for the 7F6-series identities[J]. Collect Math, 1994, 45: 13-43.
[6]
CHU W, WANG X Y. Abel's lemma on summation by parts and terminating q-series identities[J]. Numer Algorithms, 2008, 49(1/4): 105-128.
[7]
WANG C Y, CHEN X J. New proof for a nonterminating cubic hypergeometric series identity of Gasper-Rahman[J]. Journal of Nanjing University (Mathematical Biquarterly), 2015, 32: 38-45.
[8]
WANG C Y. New transformation for the partial sum of a cubic q-series[J]. Journal of East China Normal University (Natural science), 2015, 6: 46-52.
[9]
GESSEL I, STANTON D. Strange evaluations of hypergeometric series[J]. SIAM J Math Anal, 1982, 13: 295-308. DOI:10.1137/0513021
[10]
GASPER G, RAHMAN M. An indefinite bibasic summation formula and some quadratic, cubic and quartic summation and transformation formulas[J]. Canad J Math, 1990, 42: 1-27. DOI:10.4153/CJM-1990-001-5
[11]
WANG C Y, DAI J J, MEZÖ I. A nonterminating 7F6-series evaluation[J]. Integral Transforms and Special Functions, 2018, 29(9): 719-724. DOI:10.1080/10652469.2018.1492571
[12]
BAILEY W N. A note on certain q-identities[J]. Quart J Math (Oxford), 1941, 12: 173-175.
[13]
DAUM J A. The basic analogue of Kummer's theorem[J]. Bull Amer Math Soc, 1942, 48: 711-713. DOI:10.1090/S0002-9904-1942-07764-0