文章快速检索     高级检索
  华东师范大学学报(自然科学版)  2019 Issue (4): 42-51  DOI: 10.3969/j.issn.1000-5641.2019.04.005
0

引用本文  

赵倩, 白喜瑞. 双模耦合KdV方程的多孤子解与精确解[J]. 华东师范大学学报(自然科学版), 2019, (4): 42-51. DOI: 10.3969/j.issn.1000-5641.2019.04.005.
ZHAO Qian, BAI Xi-rui. Two-mode coupled KdV equation: Multiple-soliton solutions and other exact solutions[J]. Journal of East China Normal University (Natural Science), 2019, (4): 42-51. DOI: 10.3969/j.issn.1000-5641.2019.04.005.

基金项目

国家自然科学基金(11471174);宁波市自然科学基金(2014A610018)

作者简介

赵倩, 女, 硕士研究生, 研究方向为非线性数学物理.E-mail:15058429092@163.com;
白喜瑞, 女, 硕士研究生, 研究方向为偏微分方程.E-mail:15729216969@163.com

文章历史

收稿日期:2018-06-28
双模耦合KdV方程的多孤子解与精确解
赵倩 , 白喜瑞     
宁波大学 数学系, 浙江 宁波 315211
摘要:根据简化的Hirota双线性方法和Cole-Hopf变换,当一个新的双模耦合KdV方程中的非线性参数与耗散参数取特殊值时,得到了该新的双模耦合KdV方程的多孤子解.同时,当方程中的非线性参数与耗散参数取一般值时,通过不同的函数展开法,如tanh/coth法和Jacobi椭圆函数法,可得到这个方程的其他精确解.
关键词双模耦合KdV方程    简化的Hirota方法    多孤子解    周期解    
Two-mode coupled KdV equation: Multiple-soliton solutions and other exact solutions
ZHAO Qian , BAI Xi-rui     
Department of Mathematics, Ningbo University, Ningbo Zhejiang 315211, China
Abstract: In this paper, multiple-soliton solutions for a new two-mode coupled KdV (nTMcKdV) equation are obtained by using the simplified Hirota's method and the Cole-Hopf transformation. It is shown that these types of multiple solutions exist only for models in which specific values for the nonlinearity and dispersion parameters are included in the models. Furthermore, other exact solutions for an nTMcKdV equation using general values of these parameters are derived by using several different expansion methods such as the tanh/coth method and the Jacobi elliptic function method.
Keywords: two-mode coupled KdV equation    simplified Hirota's method    multiplesoliton solutions    periodic solutions    
0 引言

一般来说, 大多数非线性方程都是关于时间$ t $的一阶导数的方程, 它们描述了单一方向的波.例如, KdV方程, Burgers方程等, 这些模型均是沿$ x $轴正向传播的.而关于时间$ t $的二阶导数方程Boussinesq方程, 它是沿$ x $轴正向和负向两个方向传播的. 1994年, Korsunsky[1]第一次提出了双模KdV (TMKdV)方程, 它是关于时间$ t $的二阶导数的方程, 却描述了沿同一方向传播的两个具有相同的耗散关系、不同的相速、非线性和耗散参数的波.双模KdV方程定义如下:

$ \begin{equation} \begin{aligned} u_{tt}+(c_1+c_2)&u_{xt}+c_1c_2u_{xx}+\Big((\alpha_1+\alpha_2) \frac{\partial}{\partial t}+(\alpha_1c_2+\alpha _2 c_1) \frac{\partial}{\partial x}\Big)uu_x\\ &+\Big( (\beta_1+\beta_2)\frac{\partial}{\partial t}+(\beta_1c_2+\beta_2c_1)\frac{\partial}{\partial x}\Big) u_{xxx} = 0. \end{aligned} \end{equation} $ (0.1)

其中: $ u(x, t) $是场函数, $ -\infty<x, t<\infty $; $ c_i \;(i = 1, 2) $表示相速度; $ \alpha_i $为非线性参数; $ \beta_i $为耗散参数.场函数$ u(x, t) $表示水波从水底部到自由表面的高度.

经过特殊的变换, 并令

$ \begin{equation} \begin{aligned} s = \frac{1}{2}(c_1-c_2), \quad \alpha = \frac{\alpha_1-\alpha_2}{\alpha_1+\alpha_2}, \quad \beta = \frac{\beta_1-\beta_2}{\beta_1+\beta_2}, \quad -1 \leqslant \alpha, \, \beta \leqslant 1. \end{aligned} \end{equation} $ (0.2)

方程(0.1)可以约化为

$ \begin{equation} \begin{aligned} u_{tt}-s^2u_{xx}+\Big( \frac{\partial}{\partial t}-\alpha s\frac{\partial}{\partial x}\Big) uu_x +\Big( \frac{\partial}{\partial t}-\beta s\frac{\partial}{\partial x}\Big) u_{xxx} = 0. \end{aligned} \end{equation} $ (0.3)

可以看出, 当$ s = 0 $时, 对所得方程关于时间$ t $积分后TMKdV方程(0.3)就约化为标准形式的KdV方程.近年来, TMKdV方程(0.3)的其他性质也被广泛研究.文献[2-10]给出了TMKdV方程(0.3)的孤子解和哈密顿结构, 并证明了此方程具有两个不相容的哈密顿算子.文献[11-12]给出了TMKdV方程(0.3)的守恒律和Jacobi椭圆函数解.利用双Bell多项式, Xiao、Tian等人在文献[13]中研究了TMKdV方程(0.3)的多孤子解和Bäcklund变换.许多学者也研究了其他类型的双模方程, 例如双模mKdV方程[14], 双模Burgers方程[15], 双模KP方程[16], 双模耦合KdV方程[17][18-22].

本文结构安排如下:第1节, 根据Korsunsky在文献[1]中提出的方法, 构造新的双模耦合KdV (nTMcKdV)方程; 第2节, 利用简化的双线性方法[23-27], 得到nTMcKdV方程的多孤子解存在的条件; 第3节, 利用不同的函数展开法, 如tanh/coth和tan/cot方法找到方程的其他精确解.此外, 本节中还得到了nTMcKdV方程的Jacobi椭圆函数解; 在第4节中给出结论.

1 新的双模耦合KdV方程

本文主要研究一个新的双模耦合KdV方程. Yu在文献[28]中通过Kronecker内积构造了一个新的非线性可积耦合KdV族.他们得到了耦合KdV方程

$ \begin{equation} \left\{ \begin{aligned} &u_t+\dfrac{1}{4}u_{xxx}+\dfrac{3}{2}uu_x = 0, \\ &v_t+\dfrac{1}{4}v_{xxx}+2vv_x+\dfrac{3}{2}(uv)_x = 0. \end{aligned} \right. \end{equation} $ (1.1)

文献[28]研究了方程(1.1)的延拓结构.根据Korsunsky在文献[1]中提出的方法, 我们构造出新的双模耦合KdV (nTMcKdV)方程

$ \begin{equation} \left\{ \begin{aligned} u_{tt}&+(c_1+c_2)u_{xt}+c_1c_2u_{xx}+\Big( (\alpha_1+\alpha_2)\frac{\partial}{\partial t}+(\alpha_1c_2+\alpha _2 c_1)\frac{\partial}{\partial x} \Big) \frac{3}{2}uu_x\\ &+\Big( (\beta_1+\beta_2)\frac{\partial}{\partial t}+(\beta_1c_2+\beta_2c_1) \frac{\partial}{\partial x}\Big) \frac{1}{4}u_{xxx} = 0, \\ v_{tt}&+(c_1+c_2)v_{xt}+c_1c_2v_{xx}+\Big( (\alpha_1+\alpha_2)\frac{\partial}{\partial t}+(\alpha_1c_2+\alpha _2 c_1) \frac{\partial}{\partial x} \Big)\Big(2vv_x+\frac{3}{2}(uv)_x\Big)\\ &+\Big( (\beta_1+\beta_2)\frac{\partial}{\partial t}+(\beta_1c_2+\beta_2c_1)\frac{\partial}{\partial x}\Big) \frac{1}{4}v_{xxx} = 0. \end{aligned} \right. \end{equation} $ (1.2)

经过变换(0.2), 方程(1.2)就可约化为

$ \begin{equation} \left\{ \begin{aligned} u_{tt}&-s^2u_{xx}+\Big( \frac{\partial}{\partial t}-\alpha s\frac{\partial}{\partial x}\Big) \frac{3}{2}uu_x +\Big( \frac{\partial}{\partial t}-\beta s\frac{\partial}{\partial x}\Big) \frac{1}{4}u_{xxx} = 0, \\ v_{tt}&-s^2v_{xx}+\Big( \frac{\partial}{\partial t}-\alpha s\frac{\partial}{\partial x}\Big) \Big(2vv_x+\frac{3}{2}(uv)_x \Big) +\Big( \frac{\partial}{\partial t}-\beta s\frac{\partial}{\partial x}\Big) \frac{1}{4}v_{xxx} = 0. \end{aligned} \right. \end{equation} $ (1.3)

可以看到当$ s = 0 $时, 对所得方程关于时间$ t $积分, nTMcKdV方程就约化为了标准的耦合KdV方程(1.1).

2 多孤子解

在本节中, 将利用简化的双线性方法研究双模耦合KdV(nTMcKdV)方程的多孤子解.把方程

$ \begin{equation} \left\{ \begin{aligned} u(x, t)& = {\rm e}^{\theta_i} = {\rm e}^{k_i x-c_i t}, \\ v(x, t)& = {\rm e}^{\theta_i} = {\rm e}^{k_i x-c_i t}, \quad i = 1, 2, 3, \cdots, n. \end{aligned} \right. \end{equation} $ (2.1)

代入方程(1.3)中并比较线性项与非线性项, 得到耗散关系

$ \begin{equation} \begin{aligned} c_i = \frac{k_i^3\pm k_i\sqrt{k_i^4+16\beta sk_i^2+64s^2}}{8}. \end{aligned} \end{equation} $ (2.2)

因此

$ \begin{equation} \theta_i = k_i x-\frac{k_i^3\pm k_i\sqrt{k_i^4+16\beta sk_i^2+64s^2}}{8}t. \end{equation} $ (2.3)

利用Cole-Hopf变换, 假定方程(1.3)存在多孤子解

$ \begin{equation} \left\{ \begin{aligned} u(x, t)& = R_1(\ln f(x, t))_{xx}, \\ v(x, t)& = R_2(\ln f(x, t))_{xx}, \end{aligned} \right. \end{equation} $ (2.4)

其中$ R_1 $, $ R_2 $为待定常数.对于单孤子解, 令函数$ f(x, t) $

$ \begin{equation} f(x, t) = 1+{\rm e}^{\theta_1} = 1+{\rm e}^{k_1 x-\frac{k_1^3\pm k_1\sqrt{k_1^4+16\beta sk_1^2+64s^2}}{8}t}. \end{equation} $ (2.5)

把方程(2.4)、(2.5)代入nTMcKdV方程(1.3)并求解$ R_1 $, $ R_2 $, 得到当

$ \begin{equation} \beta = \alpha, \quad R_1 = 2, \quad R_2 = -\frac{3}{2} \end{equation} $ (2.6)

时, 单孤子解存在.

把式(2.5)与式(2.6)代入方程(2.4), 可得到nTMcKdV方程(1.3)的单孤子解为

$ \begin{equation*} \left\{ \begin{aligned} u(x, t)& = \frac{2k_1^2{\rm e}^{k_1 x-\frac{k_1^3\pm k_1\sqrt{k_1^4+16\beta sk_1^2+64s^2}} {8}t}}{\Big( 1+{\rm e}^{k_1 x-\frac{k_1^3\pm k_1\sqrt{k_1^4 +16\beta sk_1^2+64s^2}}{8}t}\Big) ^2}, \\ v(x, t)& = -\frac{3}{2}\cdot\frac{k_1^2{\rm e}^{k_1 x-\frac{k_1^3\pm k_1\sqrt{k_1^4+16\beta sk_1^2+64s^2}}{8}t}}{\Big( 1+{\rm e}^{k_1 x-\frac{k_1^3\pm k_1\sqrt{k_1^4+16\beta sk_1^2+64s^2}}{8}t}\Big) ^2}. \end{aligned} \right. \end{equation*} $

对于二孤子解, 令

$ \begin{equation} \begin{aligned} &f(x, t) = 1+{\rm e}^{\theta_1}+{\rm e}^{\theta_2}+a_{12}{\rm e}^{\theta_1+\theta_2}\\ &\; \; \; \; \; \; \; \; \; \; \; = 1+{\rm e}^{k_1 x-\frac{k_1^3\pm k_1\sqrt{k_1^4+16\beta sk_1^2+64s^2}}{8}t}+{\rm e}^{k_2 x-\frac{k_2^3\pm k_2\sqrt{k_2^4+16\beta sk_2^2+64s^2}}{8}t}\\ &\; \; \; \; \; \; \; \; \; \; \; \, \; \; \; +a_{12}{\rm e}^{k_1 x+k_2 x-\frac{k_1^3\pm k_1\sqrt{k_1^4+16\beta sk_1^2+64s^2}}{8}t-\frac{k_2^3\pm k_2\sqrt{k_2^4+16\beta sk_2^2+64s^2}}{8}t}. \end{aligned} \end{equation} $ (2.7)

把方程(2.4)、(2.7)代入nTMcKdV方程(1.3)并求解$ a_{12} $, 可得到当$ \alpha = \beta = 1 $, 且$ a_{12} = \frac{(k_1-k_2)^2}{(k_1+k_2)^2} $时, 二孤子解存在.利用同样的方法可以得到$ a_{23} $, $ a_{13} $的具体表达式, 即

$ \begin{equation} a_{ij} = \frac{(k_i-k_j)^2}{(k_i+k_j)^2}, \quad 1\leqslant i<j \leqslant 3. \end{equation} $ (2.8)

因此二孤子解为

$ \begin{equation*} \label{e2.9} \left\{ \begin{aligned} u(x, t)& = 2\; \frac{k_1^2{\rm e}^{\theta_1}+k_2^2{\rm e}^{\theta_2}+2(k_1-k_2)^2{\rm e}^{\theta_1+\theta_2}+a_{12}(k_2^2{\rm e}^{2\theta_1+\theta_2}+k_1^2{\rm e}^{\theta_1+2\theta_2}) }{(1+{\rm e}^{\theta_1}+{\rm e}^{\theta_2}+a_{12}{\rm e}^{\theta_1+\theta_2})^2}, \\ v(x, t)& = -\frac{3}{2}\cdot\frac{k_1^2{\rm e}^{\theta_1}+k_2^2{\rm e}^{\theta_2}+2(k_1-k_2)^2{\rm e}^{\theta_1+\theta_2}+a_{12}(k_2^2{\rm e}^{2\theta_1+\theta_2}+k_1^2{\rm e}^{\theta_1+2\theta_2}) }{(1+{\rm e}^{\theta_1}+{\rm e}^{\theta_2}+a_{12}{\rm e}^{\theta_1+\theta_2})^2}. \end{aligned} \right. \end{equation*} $

为了得到三孤子解, 令

$ \begin{equation} f(x, t) = 1+{\rm e}^{\theta_1}+{\rm e}^{\theta_2}+{\rm e}^{\theta_3}+a_{12}{\rm e}^{\theta_1+\theta_2}+a_{13}{\rm e}^{\theta_1+\theta_3} +a_{23}{\rm e}^{\theta_2+\theta_3}+a_{123}{\rm e}^{\theta_1+\theta_2+\theta_3}, \end{equation} $ (2.9)

其中$ \theta_i \;(i = 1, 2, 3) $由式(2.3)决定, $ a_{ij} \;(1\leqslant i<j \leqslant 3) $$ a_{123} $为相位.把方程(2.4)、(2.6)、(2.8)、(2.9)和$ \alpha = \beta = 1 $代入nTMcKdV方程(1.3), 并求解$ a_{123} $, 我们得到$ a_{123} = a_{12}a_{13}a_{23} $.利用以上结果可以得到方程(1.3)的三孤子解.

  与耦合KdV方程(1.1)不同, nTMcKdV方程(1.3)的孤子解存在只是针对特殊的$ \alpha $, $ \beta $值.在本节中, 我们发现当且仅当$ \alpha = \beta $时单孤子解存在, $ \alpha = \beta = 1 $时二孤子解与三孤子解存在.而对于一般的非线性参数$ \alpha $与耗散参数$ \beta $值, 孤子解是否存在, 我们还不能确定.

3 其他的精确解 3.1 tanh/coth方法

在本节中, 我们将会利用tanh/coth方法[29-31]来求nTMcKdV方程的精确解.设

$ \begin{equation} \left\{ \begin{aligned} u(x, t)& = a_0+a_1{\rm tanh}^{m_1}(kx-ct), \\ v(x, t)& = b_0+b_1{\rm tanh}^{m_2}(kx-ct). \end{aligned} \right. \end{equation} $ (3.1)

将方程(3.1)代入方程(1.3), 在所得方程中平衡非线性项与耗散项可得$ m_1 = m_2 = 2 $, 则

$ \begin{equation} \left\{ \begin{aligned} u(x, t)& = a_0+a_1{\rm tanh}^2(kx-ct), \\ v(x, t)& = b_0+b_1{\rm tanh}^2(kx-ct). \end{aligned} \right. \end{equation} $ (3.2)
3.1.1 $ \alpha \neq \beta $

把方程(3.2)代入nTMcKdV方程(1.3)并比较所得方程中$ {\rm tanh}(kx-ct) $的各次幂系数, 得到

$ \begin{equation} \left\{ \begin{aligned} &a_1 = a, \quad b_0 = b, \\ &b_1 = -\frac{3}{4}a, \quad c = -\frac{sk(2\beta k^2+a\alpha)}{2k^2+a}, \\ &a_0 = -\frac{2}{3}a-\frac{s(2k^2+a)}{3k^2(\alpha-\beta)}+\frac{s(2\beta k^2+a\alpha)^2}{3k^2(\alpha-\beta)(2k^2+a)}, \end{aligned} \right. \end{equation} $ (3.3)

这里$ a $, $ b $为非零常数.

由式(3.2)与式(3.3), 可求得解

$ \begin{equation} \left\{ \begin{aligned} u(x, t)& = -\frac{2}{3}a-\frac{s(2k^2+a)}{3k^2(\alpha-\beta)}+\frac{s(2\beta k^2+a\alpha)^2}{3k^2(\alpha-\beta)(2k^2+a)}\\ &\quad+a\; {\rm tanh}^2\Big( kx+\frac{sk(2\beta k^2+a\alpha)}{2k^2+a}t\Big), \\ v(x, t)& = b-\frac{3a}{4}{\rm tanh}^2\Big( kx+\frac{sk(2\beta k^2+a\alpha)}{2k^2+a}t\Big). \end{aligned} \right. \end{equation} $ (3.4)

若设

$ \begin{equation} \left\{ \begin{aligned} u(x, t)& = a_0+a_1{\rm coth}^2(kx-ct), \\ v(x, t)& = b_0+b_1{\rm coth}^2(kx-ct). \end{aligned} \right. \end{equation} $ (3.5)

$ {\rm tanh}(kx-ct) $方法的步骤相似, 可求得奇异解

$ \begin{equation} \left\{ \begin{aligned} u(x, t)& = -\frac{2}{3}a-\frac{s(2k^2+a)}{3k^2(\alpha-\beta)}+\frac{s(2\beta k^2+a\alpha)^2}{3k^2(\alpha-\beta)(2k^2+a)}\\ &\quad+a\; {\rm coth}^2\Big( kx+\frac{sk(2\beta k^2+a\alpha)}{2k^2+a}t\Big), \\ v(x, t)& = b-\frac{3a}{4}{\rm coth}^2\Big( kx+\frac{sk(2\beta k^2+a\alpha)}{2k^2+a}t\Big). \end{aligned} \right. \end{equation} $ (3.6)
3.1.2 $ \alpha = \beta $

把方程(3.2)代入nTMcKdV方程(1.3)并令$ \beta = \alpha $, 在所得的方程中比较$ {\rm tanh}(kx-ct) $的各次幂系数, 可以得到

$ \begin{equation} \left\{ \begin{aligned} &a_0 = a, \quad b_0 = b, \\ &a_1 = -2k^2, \quad b_1 = \frac{3}{2}k^2, \\ &c = -k^3+\frac{3}{4}ak\pm \frac{1}{4}k\sqrt{16k^4-8k^2(3a+4\alpha s)+9a^2+8s(3a\alpha+2s)}, \end{aligned} \right. \end{equation} $ (3.7)

这里$ a $, $ b $为非零常数.

由式(3.2)与式(3.7)可求得解为

$ \begin{equation} \left\{ \begin{aligned} &u(x, t) = a-2k^2{\rm tanh}^2\Big[ kx- \Big( -k^3+\frac{3}{4}ak\\ &\qquad\qquad\pm \frac{1}{4}k\sqrt{16k^4-8k^2(3a+4\alpha s)+9a^2+8s(3a\alpha+2s)}\Big) t\Big], \\ &v(x, t) = b+\frac{3}{2}k^2{\rm tanh}^2\Big[ kx-\Big( -k^3+\frac{3}{4}ak\\ &\qquad\qquad\pm \frac{1}{4}k\sqrt{16k^4-8k^2(3a+4\alpha s)+9a^2+8s(3a\alpha+2s)}\Big) t\Big]. \end{aligned} \right. \end{equation} $ (3.8)

若设

$ \begin{equation} \left\{ \begin{aligned} u(x, t)& = a_0+a_1{\rm coth}^2(kx-ct), \\ v(x, t)& = b_0+b_1{\rm coth}^2(kx-ct). \end{aligned} \right. \end{equation} $ (3.9)

$ {\rm tanh}(kx-ct) $方法的步骤相似, 可求得奇异解为

$ \begin{equation} \left\{ \begin{aligned} &u(x, t) = a-2k^2{\rm coth}^2\Big[ kx- \Big( -k^3+\frac{3}{4}ak\\ &\qquad\qquad\pm \frac{1}{4}k\sqrt{16k^4-8k^2(3a+4\alpha s)+9a^2+8s(3a\alpha+2s)}\Big) t\Big], \\ &v(x, t) = b+\frac{3}{2}k^2{\rm coth}^2\Big[ kx-\Big( -k^3+\frac{3}{4}ak\\ &\qquad\qquad\pm \frac{1}{4}k\sqrt{16k^4-8k^2(3a+4\alpha s)+9a^2+8s(3a\alpha+2s)}\Big) t\Big]. \end{aligned} \right. \end{equation} $ (3.10)
3.2 tan/cot方法

在本节中, 对于一般的非线性参数与耗散参数值, 将利用tan/cot方法来求{nTMcKdV}方程的周期解.设

$ \begin{equation} \left\{ \begin{aligned} u(x, t)& = a_0+a_1{\rm tan}^{m_3}(kx-ct), \\ v(x, t)& = b_0+b_1{\rm tan}^{m_4}(kx-ct). \end{aligned} \right. \end{equation} $ (3.11)

把式(3.11)代入方程(1.3), 在所得方程中平衡非线性项与耗散项可得$ m_3 = m_4 = 2 $.则

$ \begin{equation} \left\{ \begin{aligned} u(x, t)& = a_0+a_1{\rm tan}^2(kx-ct), \\ v(x, t)& = b_0+b_1{\rm tan}^2(kx-ct). \end{aligned} \right. \end{equation} $ (3.12)
3.2.1 $ \alpha \neq \beta $

事实上, 由于$ {\rm tanh}({\rm i}\xi) = {\rm i} \ {\rm tan}(\xi) $($ {\rm i} $是虚数单位), 如果令$ k $$ {\rm i}k $并代入式(3.4), 即可求得解为

$ \begin{equation} \left\{ \begin{aligned} u(x, t)& = \frac{2}{3}a-\frac{s(2k^2+a)}{3k^2(\alpha-\beta)}+\frac{s(2\beta k^2+a\alpha)^2}{3k^2(\alpha-\beta)(2k^2+a)}\\ &\quad+a\; {\rm tan}^2\Big( kx+\frac{sk(2\beta k^2+a\alpha)}{2k^2+a}t\Big), \\ v(x, t)& = b-\frac{3a}{4}{\rm tan}^2\Big( kx+\frac{sk(2\beta k^2+a\alpha)}{2k^2+a}t\Big). \end{aligned} \right. \end{equation} $ (3.13)

若设

$ \begin{equation} \left\{ \begin{aligned} u(x, t)& = a_0+a_1{\rm cot}^2(kx-ct), \\ v(x, t)& = b_0+b_1{\rm cot}^2(kx-ct). \end{aligned} \right. \end{equation} $ (3.14)

$ {\rm tan}(kx-ct) $方法的步骤相似, 可求得奇异解为

$ \begin{equation} \left\{ \begin{aligned} u(x, t)& = \frac{2}{3}a-\frac{s(2k^2+a)}{3k^2(\alpha-\beta)}+\frac{s(2\beta k^2+a\alpha)^2}{3k^2(\alpha-\beta)(2k^2+a)}\\ &\quad+a\; {\rm cot}^2\Big( kx+\frac{sk(2\beta k^2+a\alpha)}{2k^2+a}t\Big), \\ v(x, t)& = b-\frac{3a}{4}{\rm cot}^2\Big( kx+\frac{sk(2\beta k^2+a\alpha)}{2k^2+a}t\Big). \end{aligned} \right. \end{equation} $ (3.15)
3.2.2 $ \alpha = \beta $

$ k $$ {\rm i}k $, 并代入式(3.8), 即可求得解为

$ \begin{equation} \left\{ \begin{aligned} &u(x, t) = a-2k^2{\rm tan}^2\Big[ kx- \Big( k^3+\frac{3}{4}ak\\ &\qquad\qquad\pm \frac{1}{4}k\sqrt{16k^4+8k^2(3a+4\alpha s)+9a^2+8s(3a\alpha+2s)}\Big) t\Big], \\ &v(x, t) = b+\frac{3}{2}k^2{\rm tan}^2\Big[ kx-\Big( k^3+\frac{3}{4}ak\\ &\qquad\qquad\pm \frac{1}{4}k\sqrt{16k^4+8k^2(3a+4\alpha s)+9a^2+8s(3a\alpha+2s)}\Big) t\Big]. \end{aligned} \right. \end{equation} $ (3.16)

若设

$ \begin{equation} \left\{ \begin{aligned} u(x, t)& = a_0+a_1{\rm cot}^2(kx-ct), \\ v(x, t)& = b_0+b_1{\rm cot}^2(kx-ct). \end{aligned} \right. \end{equation} $ (3.17)

$ {\rm tan}(kx-ct) $方法的步骤相似, 可求得奇异解为

$ \begin{equation} \left\{ \begin{aligned} &u(x, t) = a-2k^2{\rm cot}^2\Big[ kx- \Big( k^3+\frac{3}{4}ak\\ &\qquad\qquad\pm \frac{1}{4}k\sqrt{16k^4+8k^2(3a+4\alpha s)+9a^2+8s(3a\alpha+2s)}\Big) t\Big], \\ &v(x, t) = b+\frac{3}{2}k^2{\rm cot}^2\Big[ kx-\Big( k^3+\frac{3}{4}ak\\ &\qquad\qquad\pm \frac{1}{4}k\sqrt{16k^4+8k^2(3a+4\alpha s)+9a^2+8s(3a\alpha+2s)}\Big) t\Big]. \end{aligned} \right. \end{equation} $ (3.18)
3.3 Jacobi椭圆函数解

在研究nTMcKdV方程(1.3)的Jacobi椭圆函数解之前, 我们先介绍一些基本关系式[12, 32]

$ \begin{equation} \left\{ \begin{aligned} &{\rm sn}(\zeta, 1) = {\rm tanh}(\zeta), \quad{\rm cn}(\zeta, 1) = {\rm sech}(\zeta), \\ &{\rm sn}^2(\zeta, m)+{\rm cn}^2(\zeta, m) = 1, \quad m^2{\rm sn}^2(\zeta, m)+{\rm dn}^2(\zeta, m) = 1, \; m \in (0, 1]. \end{aligned} \right. \end{equation} $ (3.19)

$ u = u(\xi), \;v = v(\xi) $, $ \xi = k(x-\lambda t), \; k\neq 0 $, $ k, \, \lambda $为任意常数, 利用链式法则可将nTMcKdV方程(1.3)化为下述常微分方程

$ \begin{equation} \left\{ \begin{aligned} -\frac{3}{2}&(\lambda+\alpha s)u'^2+(\lambda^2-s^2)u''-\frac{3}{2}(\lambda+\alpha s)uu''-\frac{1}{4}k^2(\lambda+\beta s)u'''' = 0, \\ -\frac{3}{2}&(\lambda+\alpha s)u''v-3(\lambda+\alpha s)u'v'-2(\lambda+\alpha s)v'^2+(\lambda^2-s^2)v''-2(\lambda+\alpha s)vv''\\ &-\frac{3}{2}(\lambda+\alpha s)uv''-\frac{1}{4}k^2(\lambda+\beta s)v'''' = 0. \end{aligned} \right. \end{equation} $ (3.20)
3.3.1 Jacobi椭圆正弦函数解

$u(\xi ) = \sum\limits_{i = 0}^M {{a_i}} {\mkern 1mu} {\rm{s}}{{\rm{n}}^i}(\xi ,m),\quad v(\xi ) = \sum\limits_{i = 0}^N {{b_i}} {\mkern 1mu} {\rm{s}}{{\rm{n}}^i}(\xi ,m). $ (3.21)

把式(3.21)代入方程(3.20)并比较非线性项与耗散项, 可得到$ M = N = 2 $, 则

$ \begin{equation} \left\{ \begin{aligned} u(\xi)& = a_0+a_1 \, {\rm sn}(\xi, m)+a_2 \, {\rm sn}^2(\xi, m), \\ v(\xi)& = b_0+b_1 \, {\rm sn}(\xi, m)+b_2 \, {\rm sn}^2(\xi, m). \end{aligned} \right. \end{equation} $ (3.22)

将方程(3.22)代入方程(3.20)并利用关系式(3.19), 在所得方程中令$ {\rm sn}(\xi, m) $的不同次幂系数均为零, 可得到

$ \begin{equation} \left\{ \begin{aligned} &a_1 = 0, \; b_1 = 0, \; b_0 = b, \\ &a_0 = \frac{2}{3}\cdot\frac{\beta k^2m^2s+k^2\lambda m^2+\beta k^2s+k^2\lambda+\lambda^2-s^2}{\alpha s+\lambda}, \\ &a_2 = -\frac{2k^2m^2(\beta s+\lambda)}{\alpha s+\lambda}, \quad b_2 = \frac{3}{2}\cdot\frac{k^2m^2(\beta s+\lambda)}{\alpha s+\lambda}, \end{aligned} \right. \end{equation} $ (3.23)

这里$ b $为非零常数.因此, Jacobi椭圆正弦函数解为

$ \begin{equation} \left\{ \begin{aligned} u(x, t) = &\, \frac{2}{3(\alpha s+\lambda)} [ k^2(1+m^2)(\beta s+\lambda)+\lambda^2-s^2\\ &-3k^2m^2(\beta s+\lambda){\rm sn}^2\big(k(x-\lambda t), m\big)], \\ v(x, t) = &\, b+\frac{3}{2}\cdot\frac{k^2m^2(\beta s+\lambda)}{\alpha s+\lambda}{\rm sn}^2\big(k(x-\lambda t), m\big). \end{aligned} \right. \end{equation} $ (3.24)

若式(3.24)中$ m = 1 $, 可得到双曲正切函数解

$ \begin{equation} \left\{ \begin{aligned} u(x, t) = &\, \frac{2}{3(\alpha s+\lambda)} [ 2k^2(\beta s+\lambda)+\lambda^2-s^2-3k^2(\beta s+\lambda){\rm tanh}^2\big(k(x-\lambda t)\big)], \\ v(x, t) = &\, b+\frac{3}{2}\cdot\frac{k^2(\beta s+\lambda)}{\alpha s+\lambda}{\rm tanh}^2\big(k(x-\lambda t)\big). \end{aligned} \right. \end{equation} $ (3.25)

可以看出这组解即为利用tanh方法得到的解(3.4)或(3.8).

3.3.2 Jacobi椭圆余弦函数解

在式(3.21)中用$ {\rm cn}(\xi, m) $代替$ {\rm sn}(\xi, m) $, 代入方程(3.20)并平衡非线性项与耗散项, 可得到$ M = N = 2 $, 则

$ \begin{equation} \left\{ \begin{aligned} u(\xi)& = a_0+a_1 \, {\rm cn}(\xi, m)+a_2 \, {\rm cn}^2(\xi, m), \\ v(\xi)& = b_0+b_1 \, {\rm cn}(\xi, m)+b_2 \, {\rm cn}^2(\xi, m). \end{aligned} \right. \end{equation} $ (3.26)

将式(3.26)代入方程(3.20)并利用关系式(3.19), 在所得方程中令$ {\rm cn}(\xi, m) $的不同次幂系数均为零, 可得到

$ \begin{equation} \left\{ \begin{aligned} &a_1 = 0, \; b_1 = 0, \; b_0 = b, \\ &a_0 = -\frac{2}{3}\cdot\frac{2\beta k^2m^2s+2k^2\lambda m^2-\beta k^2s-k^2\lambda-\lambda^2+s^2}{\alpha s+\lambda}, \\ &a_2 = \frac{2k^2m^2(\beta s+\lambda)}{\alpha s+\lambda}, \quad b_2 = -\frac{3}{2}\cdot\frac{k^2m^2(\beta s+\lambda)}{\alpha s+\lambda}, \end{aligned} \right. \end{equation} $ (3.27)

这里$ b $为非零常数.因此, Jacobi椭圆余弦函数解为

$ \begin{equation} \left\{ \begin{aligned} u(x, t)& = -\frac{2}{3(\alpha s+\lambda)} [ k^2(2m^2-1)(\beta s+\lambda)-\lambda^2+s^2\\ &\quad-3k^2m^2(\beta s+\lambda){\rm cn}^2\big(k(x-\lambda t), m\big) ], \\[-1mm] v(x, t)& = b-\frac{3}{2}\cdot\frac{k^2m^2(\beta s+\lambda)}{\alpha s+\lambda}{\rm cn}^2\big(k(x-\lambda t), m\big) . \end{aligned} \right. \end{equation} $ (3.28)

  由式(3.27)中$ a_1 = b_1 = 0 $可知, Jacobi椭圆余弦函数解也可利用关系式(3.19)直接由Jacobi椭圆正弦函数解得出.

若在解(3.28)中取$ m = 1 $, 可得到双曲正割函数解

$ \begin{equation*} \label{e3.31} \left\{ \begin{aligned} u(x, t)& = -\frac{2}{3(\alpha s+\lambda)} [ k^2(\beta s+\lambda)-\lambda^2+ s^2-3k^2(\beta s+\lambda){\rm sech}^2\big(k(x-\lambda t)\big)], \\[-1mm] v(x, t)& = b-\frac{3}{2}\cdot\frac{k^2(\beta s+\lambda)}{\alpha s+\lambda}{\rm sech}^2\big(k(x-\lambda t)\big). \end{aligned} \right. \end{equation*} $

与求$ {\rm sn}(\xi, m) $$ {\rm cn}(\xi, m) $函数解的步骤一样, 我们可求得Jacobi DN解

$ \begin{equation*} \label{e3.32} \left\{ \begin{aligned} u(x, t)& = \frac{2}{3(\alpha s+\lambda)} [ k^2(m^2-2)(\beta s+\lambda)+\lambda^2-s^2\\[-1mm] &\; \; \; +3k^2(\beta s+\lambda){\rm dn}^2\big(k(x-\lambda t), m\big)], \\[-1mm] v(x, t)& = b-\frac{3}{2}\cdot\frac{k^2(\beta s+\lambda)}{\alpha s+\lambda}{\rm dn}^2(k(x-\lambda t), m). \end{aligned} \right. \end{equation*} $

由于$ {\rm tanh}({\rm i}\xi) = {\rm i} \ {\rm tan}(\xi) $, 如果令$ k = {\rm i}\, \kappa $并代入式(3.25), 可得到周期解

$ \begin{equation*} \left\{ \begin{aligned} u(x, t)& = \frac{2}{3(\alpha s+\lambda)} [ -2\kappa^2(\beta s+\lambda)+ \lambda^2-s^2-3\kappa^2(\beta s+\lambda){\rm tan}^2(\kappa(x-\lambda t))], \\[-1mm] v(x, t)& = b+\frac{3}{2}\cdot\frac{\kappa^2(\beta s+\lambda)}{\alpha s+\lambda}{\rm tan}^2\big(\kappa(x-\lambda t)\big). \end{aligned} \right. \end{equation*} $

可以看出这组解即为利用tan方法得到的解(3.13)或(3.16).

4 结论

在本文中, 我们构造了一个新的双模耦合KdV方程.一方面, 通过简化的Hirota方法和Cole-Hopf变换, 对于特殊的$ \alpha $$ \beta $值可得到该方程的孤子解, 但对于一般的$ \alpha $$ \beta $值, 孤子解是否存在, 我们还不能确定.另一方面, 通过不同的函数展开法, 对于一般的$ \alpha $$ \beta $值, 我们得到了该方程的其他精确解.

参考文献
[1]
KORSUNSKY S V. Soliton solutions for a second-order KdV equation[J]. Phys Lett A, 1994, 185: 174-176. DOI:10.1016/0375-9601(94)90842-7
[2]
LEE C T, LIU J L, LEE C C, et al. The second-order KdV equation and its soliton-like solution[J]. Modern Physics Letters B, 2009, 23: 1771-1780.
[3]
LEE C C, LEE C T, LIU J L, et al. Quasi-solitons of the two-mode Korteweg-de Vries equation[J]. Eur Phys J Appl Phys, 2010, 52: 11301. DOI:10.1051/epjap/2010132
[4]
LEE C T. Some notes on a two-mode Korteweg-de Vries equation[J]. Phys Scr, 2010, 81: 065006. DOI:10.1088/0031-8949/81/06/065006
[5]
LEE C T, LIU J L. A Hamiltonian model and soliton phenomenon for a two-mode KdV equation[J]. Rocky Mt J Math, 2011, 41: 1273-1289. DOI:10.1216/RMJ-2011-41-4-1273
[6]
LEE C T, LEE C C. On wave solutions of a weakly nonlinear and weakly dispersive two-mode wave system[J]. Waves in Random and Complex Media, 2013, 23: 56-76. DOI:10.1080/17455030.2013.770585
[7]
LEE C T, LEE C C. Analysis of solitonic phenomenon for a two-mode KdV equation[J]. Physics of Wave Phenomena, 2014, 22: 69-80. DOI:10.3103/S1541308X14010130
[8]
LEE C T, LEE C C. On the study of a nonlinear higher order dispersive wave equation:Its mathematical physical structure and anomaly soliton phenomena[J]. Waves in Random and Complex Media, 2015, 25: 197-222. DOI:10.1080/17455030.2014.1002441
[9]
LEE C T, LEE C C. Symbolic computation on a second-order KdV equation[J]. Journal of Symbolic Computation, 2016, 74: 70-95. DOI:10.1016/j.jsc.2015.06.006
[10]
WAZWAZ A M. Multiple soliton solutions and other exact solutions for a two-mode KdV equation[J]. Math Methods Appl Sci, 2017, 40: 2277-2283.
[11]
LEE C T, LEE C C, LIU M L. Double-soliton and conservation law structures for a higher-order type of Korteweg-de Vries equation[J]. Physics Essays, 2015, 28: 633-638. DOI:10.4006/0836-1398-28.4.633
[12]
ALQURAN M, JARRAH A. Jacobi elliptic function solutions for a two-mode KdV equation[J/OL]. Journal of King Saud University-Science, (2017-07-03)[2018-06-28]. http://dx.doi.org/10.1016/j.jksus.2017.06.010.
[13]
XIAO Z J, TIAN B, ZHEN H L, et al. Multi-soliton solutions and Bäcklund transformation for a two-mode KdV equation in a fluid[J]. Waves in Random and Complex Media, 2017, 27: 1-14. DOI:10.1080/17455030.2016.1185193
[14]
WAZWAZ A M. A two-mode modified KdV equation with multiple soliton solutions[J]. Appl Math Lett, 2017, 70: 1-6. DOI:10.1016/j.aml.2017.02.015
[15]
WAZWAZ A M. A two-mode Burgers equation of weak shock waves in a fluid:Multiple kink solutions and other exact solutions[J]. Int J Appl Comput Math, 2017, 3: 3977-3985. DOI:10.1007/s40819-016-0302-4
[16]
WAZWAZ A M. A study on a two-wave mode Kadomtsev-Petviashvili equation:Conditions for multiple soliton solutions to exist[J]. Math Methods Appl Sci, 2017, 40: 4128-4133. DOI:10.1002/mma.v40.11
[17]
JARADAT H M, SYAM M, ALQURAN M. A two-mode coupled Korteweg-de Vries:Multiple-soliton solutions and other exact solutions[J]. Nonlinear Dyn, 2017, 90: 371-377. DOI:10.1007/s11071-017-3668-x
[18]
WAZWAZ A M. Two-mode fifth-order KdV equations:Necessary conditions for multiple-soliton solutions to exist[J]. Nonlinear Dyn, 2017, 87: 1685-1691. DOI:10.1007/s11071-016-3144-z
[19]
WAZWAZ A M. Two-mode Sharma-Tasso-Olver equation and two-mode fourth-order Burgers equation:Multiple kink solutions[J]. Alexandria Eng J, 2018, 57: 1971-1976. DOI:10.1016/j.aej.2017.04.003
[20]
JARDAT H M. Two-mode coupled Burgers equation:Multiple-kink solutions and other exact solutions[J]. Alexandria Eng J, 2018, 57: 2151-2155. DOI:10.1016/j.aej.2017.06.014
[21]
SYAM M, JARADAT H M, ALQURAN M. A study on the two-mode coupled modified Korteweg-de Vries using the simplified bilinear and the trigonometric-function methods[J]. Nonlinear Dyn, 2017, 90: 1363-1371. DOI:10.1007/s11071-017-3732-6
[22]
WAZWAZ A M. Two wave mode higher-order modified KdV equations:Essential conditions for multiple soliton solutions to exist[J]. International Journal of Numerical Methods for Heat and Fluid Flow, 2017, 27: 2223-2230. DOI:10.1108/HFF-10-2016-0413
[23]
HEREMAN W, NUSEIR A. Symbolic methods to construct exact solutions of nonlinear partial differential equations[J]. Mathematics and Computers in Simulation, 1997, 43: 13-27. DOI:10.1016/S0378-4754(96)00053-5
[24]
WAZWAZ A M. Single and multiple-soliton solutions for the (2+1)-dimensional KdV equation[J]. Appl Math Comput, 2008, 204: 20-26.
[25]
ZUO J M, ZHANG Y M. The Hirota bilinear method for the coupled Burgers equation and the high-order Boussinesq-Burgers equation[J]. Chin Phy B, 2011, 20: 010205. DOI:10.1088/1674-1056/20/1/010205
[26]
WAZWAZ A M. Multiple soliton solutions for the integrable couplings of the KdV and the KP equations[J]. Open Physics, 2013, 11: 291-295.
[27]
WAZWAZ A M. Multiple kink solutions for two coupled integrable (2+1)-dimensional systems[J]. Appl Math Lett, 2016, 58: 1-6. DOI:10.1016/j.aml.2016.01.019
[28]
YU F J. Prolongation structure for nonlinear integrable couplings of a KdV soliton hierarchy[J]. Chin Phys B, 2012, 21: 010201. DOI:10.1088/1674-1056/21/1/010201
[29]
MALFLIET W, HEREMAN W. The tanh method:I. Exact solutions of nonlinear evolution and wave equations[J]. Phys Scr, 1996, 54: 563-568. DOI:10.1088/0031-8949/54/6/003
[30]
FAN E, HONA Y C. Generalized tanh method extended to special types of nonlinear equations[J]. Zeitschrift für Naturforschung A, 2002, 57: 692-700.
[31]
WAZWAZ A M. The tanh method for traveling wave solutions of nonlinear equations[J]. Appl Math and Comput, 2004, 154: 713-723.
[32]
LIU S, FU Z, LIU S, et al. Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations[J]. Phys Lett A, 2001, 289: 69-74. DOI:10.1016/S0375-9601(01)00580-1