文章编号:1000-5641(2009)06-0128-06

配合物[Cu(NPG)₂(H₂O)₂]·CH₃CH₂OH 的合成、晶体结构与磁性研究

(1. 黄山学院 化学系,安徽 黄山 245041; 2. 西北大学 化学与材料科学学院 合成与天然功能分子化学教育部重点实验室,西安 710069; 3. 南京大学 化学化工学院 配位化学国家重点实验室,南京 210093)

摘要:用溶液法合成了配合物[Cu(NPG)₂(H₂O)₂]•CH₃CH₂OH (HNPG=邻苯二甲酰甘氨酸),对其进行了元素分析,红外光谱,热重分析,磁性和 X 射线单晶衍射实验.单晶结构分析表明该晶体属于三斜晶系,P-1 空间群,晶胞系数 a=0.476 74(12) nm,b=0.113 19(3) nm,c=0.11 614(3) nm, $\alpha=106.468$ (4)°, $\beta=100.114$ (5)°, $\gamma=94.358$ (5)°,V=0.586 4(3) nm³,Z=1. Cu(II)通过 O-C-O 构成一维链状结构,分子间氢键将一维链连接为平面结构,氢键对分子结构稳定起到重要作用;配合物存在弱的反铁磁性.

关键词:铜配合物;晶体结构;姜-泰勒效应;氢键;磁性

中图分类号: O611 文献标识码: A

XU Han¹, ZHOU Quan¹, LIU Bin², LI Yi-zhi³, BAI Jun-feng³

- (1. Department of Chemistry, Huangshan University, Huangshan Anhui 245041, China;
- 2. Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education),

 College of Chemistry & Material, Northwest University, Xi'an 710069, China;
 - 3. State Key Laboratory of Coordination Chemistry, College of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China)

Abstract: A coordination polymer was synthesized by solution method. Its structure was determined by single crystal X-ray diffraction analysis and further characterized by elemental, IR spectra, TG and magnetic property analysis. The title compound crystallizes in triclinic space group P-1, with a = 0.47674(12) nm, b = 0.11319(3) nm, c = 0.11614(3) nm, $a = 106.468(4)^{\circ}$, $\beta = 100.114(5)^{\circ}$, $\gamma = 94.358(5)^{\circ}$, V = 0.5864(3) nm³, Z = 1. Cu(II) ions are linked by O-C-O unit to form one-dimensional chain, the 1D chains are connected by intermolecular hydrogen bonds and resulting in 2D structure. Hydrogen bonds play significant role in stabilization of the struc-

收稿日期:2008-12

基金项目:黄山学院自然科学基金(2007xkjq013)

第一作者:徐涵,女,硕士,助教,研究方向为功能配位化学. E-mail: xuhannju@163.com.

ture, weak ferromagnetic interactions are observed in the compound.

Key words: Cu coordination complex; crystal structure; Jahn-Teller effect; hydrogen bond; magnetic property

0 引 言

配位聚合物在催化、电化学、光化学、吸附、离子交换和磁性能方面具有潜在的应用前景而受到普遍关注^[1-4].通过选择不同的多齿配体和金属离子,可以组装成具有各种新型骨架结构和特殊物理化学性能的配合物.有机配体在金属离子之间起着间隔或桥联的作用,羧基不仅能以多种灵活的配位方式与金属离子键合,还可以与金属离子组合形成多核金属离子的二级构筑单元,进而够造出多种新颖有趣的配位聚合物拓扑结构^[5-6]. 羧酸还可以根据去质子化或配位程度的不同,提供氢键的给体与受体^[7-8]. 本文中用溶液法以含羧基的邻苯二甲酰甘氨酸配体和 Cu(II) 盐合成配合物 $[Cu(NPG)_2(H_2O)_2] \cdot CH_3CH_2OH$,对其进行了单晶结构分析,并进行了红外光谱(IR),热重(TG),磁性质等性质的表征.

1 实 验

1.1 试剂与仪器

Cu(NO₃)₂·6H₂O, HNPG, 乙醇均为市售,水为蒸馏水. FTIR 仪(VECTOR-22 Bruker 公司), MPMS-XL7 SQUID 磁力计, Bruker Smart Apex CCD 衍射仪(Bruker 公司), PER-kin Elmer 240C elemental analyzer 元素分析仪.

1.2 配合物的合成

将配体邻苯二甲酰甘氨酸(11 mg, 0.055 mmol) 溶于5 mL乙醇溶液中,将此溶液慢慢地滴加到溶有 $Cu(NO_3)_2 \cdot 6H_2O$ (15 mg, 0.05 mmol) 水溶液(5 mL)的试管中,静置.四周后,有天蓝色棍棒状的晶体形成.将晶体用乙醚洗净,并在空气中干燥.

1.3 红外光谱测定与元素分析

FTIR(KBr 固体压片 ν/cm^{-1}):3 454(s, br),1 768(m), 1 709(s), 1 601(m), 1 422 (s), 1 378(m), 1 318(m), 1 118(w), 961(w), 747(w), 715(w), 638(w);元素分析(%),按 $\text{CuC}_{22}\text{N}_2\text{O}_{11}\text{H}_{22}$ 计算(括号内为计算值):C 47.68 (47.70), H 4.02 (4.00), N 5.09(5.06),由此确定化合物的的组成为 $\text{C}_{22}\text{H}_{22}\text{Cu}\text{N}_2\text{O}_{11}$.

1.4 晶体结构的测定

选取 $0.28~\text{mm}\times0.26~\text{mm}\times0.25~\text{mm}$ 的单晶,采用 Bruker Smart Apex CCD 单晶衍射仪,使用经过石墨单色器单色化的 MoK_{α} 射线 ($\lambda=0.071~073~\text{nm}$),以 Φ - ω 扫描方式收集衍射数据. 配合物在 1.89° < θ < 26.00° 的范围内,应用 Smart 程序收集 5.483 个衍射数据. 采用 SHEXL- $97^{[9]}$ 和 SHELXS- $97^{[10]}$ 程序,由直接法解出并用全矩阵最小二乘法对结构加以精修. 对所有非氢原子做了各向异性精修,详细参数见表 1.

2 结果与分析

2.1 配合物的晶体结构

配合物 $[Cu(NPG)_2(H_2O)_2]$ • CH_3CH_2OH 的晶体学数据及结构修正数据在表 1 中列

出,主要的键长和键角列于表 2. 由图 1 可见,每个 Cu(II)离子与 4 个来自羧基的 4 个 O 原子配位,羧基的配位方式是 μ_2 - η^1 : η^1 (一个氧原子配位一个金属离子,一个羧基配位两个金属离子). 另外两个配位点被水占据. 在晶胞中还存在一个游离的无序乙醇分子. 在标题化合物中,中心离子采取六配位的变形八面体的配位构型. 2 个配体 HNPG 的羧基氧原子(O3,O3A),配位水分子的 2 个氧原子(O5,O5A)共同构成赤道平面,其键长分别为0. 194 7 (10),0. 194 7 (10),0. 196 1 (9) 和0. 196 1 (9) nm,平均键长为0. 195 4 nm. 轴向位置被相邻配体上的羧基氧原子(O4B,O4C)配位,其键长为0. 259 9 nm. 这三种 Cu(II)-O 键长的不同是因为姜-泰勒效应,姜-泰勒效应降低了整个体系的能量,有利于结构的稳定. 相邻的两个Cu(II)与其配位的两个羧基(COO^2)了一个不规则的八边形,并通过这种方式将相邻的结构单元连接形成一维结构. 分子间氢键 C-H····O 将相邻的链状连接形成平面结构(见图 2),氢键的存在有利于结构的稳定(氢键参数列于表 3).

表 1 标题配合物的晶体学数据

Tab. 1 Crystal data and structure refinement for title compound

Tab. 1 Crystal data and structure refinement for title compound 参数 数据				
化学式	[Cu(NPG) ₂ (H ₂ O) ₂] • CH ₃ CH ₂ OH			
经验式	CuC ₂₂ N ₂ O ₁₁ H ₂₂			
Mr	553. 96			
T/K	293(2)			
λ(MoKa) /nm	0.071 073			
晶系	Triclinic			
空间群	P-1			
a/nm	0.476 74(12)			
b/nm	0.113 19(3)			
c/nm	0.116 14(3)			
$\alpha/(\degree)$	106.468(4)			
β/(°)	100.114(5)			
γ/(°)	94. 358(5)			
V/nm^3	0.586 4(3)			
Z	1			
$D/(g \cdot cm^{-3})$	1.569			
$\mu/\mathrm{\ mm^{-1}}$	0.996			
F(000)	285.0			
晶体尺寸/mm×mm×mm	$0.28 \times 0.26 \times 0.25$			
收集衍射数方法	$arphi$ – ω			
θ 范围/(°)	1.89~26.00			
收集/独立衍射点数(Rint)	5483 / 2299 (0.0450)			
衍射点数[I>2σ(I)]	1985			
限制指标	$-5 \le h \le 5$ $-13 \le k \le 13$ $-12 \le l \le 14$			
吻合因子	1.036			
$R1$, $wR2[I>2\sigma(I)]$	0.0603,0.1369			
Δ/σ	0.000			

注: $R1 = \sum ||F_0 - F_0|| / |F_0|$, $wR2 = \sum w(\sum F_0^2 - F_0^2)^2 / \sum w(F_0^2)^2]^{1/2}$.

表 2 标题配合物的主要键长和键角

Tab. 2 Selected bond lengths (nm) and angles (°) for title compound

Bond	Length/nm	Bond	Angle/(°)	Bond	Angle/(°)
Cu(1)-O(3)	0.1947(10)	Cu(1)-O(5)	0.1961(9)	Cu(1)-O(4) #3	0.2598(5)
O(3)- $Cu(1)$ - $O(3)$ #2	180.000(6)	$O(5)^{\sharp 2}$ -Cu(1)-O(4) $^{\sharp 2}$	88.63(4)	O(3)- $Cu(1)$ - $O(4)$ #3	88.26(4)
$O(3)$ - $C_0(1)$ - $O(5)$ #2	91.8(4)	$O(4)^{\#1}$ - $Cu(1)$ - $O(3)^{\#2}$	88.26(4)	$O(4)^{\sharp 1}$ - $Cu(1)$ - $O(5)^{\sharp 2}$	88.63(4)
$O(3)^{\#2}$ -Cu(1)-O(5) $^{\#2}$	88.2(4)	O(3)- $Cu(1)$ - $O(4)$ #1	91.74(4)	O(5)- $Cu(1)$ - $O(4)$ #3	91.37(4)
O(5)- $Cu(1)$ - $O(5)$ #2	180.000(4)	$O(4)^{\#1}$ - $Cu(1)$ - $O(4)^{\#2}$	180.000(6)	$O(4) #_3-Cu(1)-O(5) #_2$	88.63(4)

注:对称码操作 #1 x - 1, y, z; #2 - x, - y + 1, - z + 2; #3 1 - x, 1 - y, 2 - z.

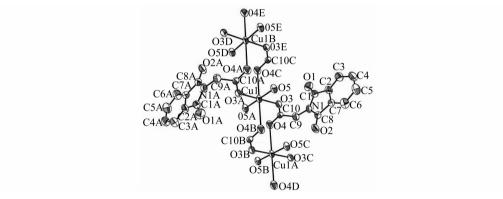


图 1 配合物分子的结构图(椭球几率 30%)

Fig. 1 $\,$ Molecular structure of the compound (probability of ellipsoid is $30\,\%$)

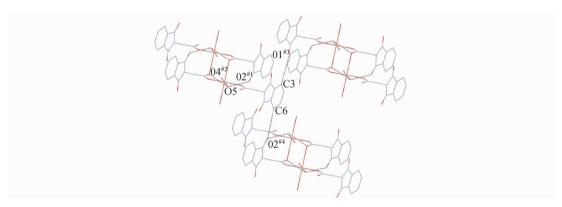


图 2 配合物的氢键图

Fig. 2 Hydrogen bonds in the compound

表 3 标题配合物的氢键键长和键角

Tab. 3 Hydrogen bonding for title compound

D-H•••A	d(D-H)/nm	$d(H \cdot \cdot \cdot A)/nm$	$d(D \cdot \cdot \cdot A)/nm$	<(DHA)/(°)
O(5)-H(5C)···O2 ^{#1}	0.085	0.194	0.273 81	155
$O(5)-H(5A)\cdots O4^{\#2}$	0.082	0.187	0.259 88	148
$C(3)-H(3)\cdots O(1)^{\#3}$	0.093	0.256	0.347 47	169
C(6)-H(6)···O(2) #4	0.093	0.254	0.345 13	166

2.2 配合物的热重分析

配合物的热重曲线(见图 3)表明,配合物在 $50\sim80$ °C 失重15.3%(计算值为14.8%),对应失去两个配位水分子及溶剂分子乙醇. $80\sim350$ °C 化合物对热性质稳定,350 °C 后,化合物快速分解.

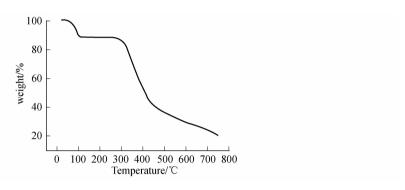


图 3 配合物[$Cu(NPG)_2(H_2O)_2$] • CH_3CH_2OH 的热重曲线

Fig. 3 Thermal analysis curves of the complex [Cu(NPG)₂(H₂O)₂] • CH₃CH₂OH

2.3 配合物的磁性研究

在 $2\sim300$ K范围内对配合物进行了[Cu(NPG)₂(H₂O)₂]• CH₃CH₂OH 进行了磁学性质研究. 结果表明,化合物表现为弱的反铁磁性,如图 4 所示,图中实线为拟合值,方框区为实验值. 配合物磁性研究显示大于50 K时,磁性行为遵守居里-外斯定律且居里常数为 0. 39 cm³• K• mol⁻¹,外斯常数为 -0.95 K. 在 $\chi_{\rm M}$ 和 $\chi_{\rm M}T$ 曲线图上连续上升以及在冷却时在 $\chi_{\rm M}T$ 曲线连续下降都证明化合物具有反铁磁性.

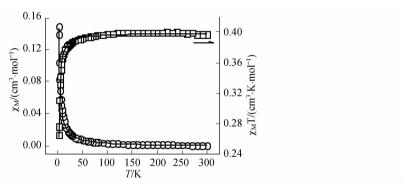


图 4 化合物[Cu(NPG)₂(H₂O)₂]·CH₃CH₂OH 的磁化率随温度变化的曲线 χ_M T-T

Fig. 4 The χ_M and $\chi_M T$ versus T plot for compound $[Cu(NPG)_2(H_2O)_2] \cdot CH_3CH_2OH$

化合物中相邻 Cu(II)之间的距离为0.4767 nm. 测量的反铁磁性自旋相互交换作用主要来源于 Cu. 配合物的磁化数据用铁磁均匀链模型处理(Heisenberg Hamiltonian $H = -JS_AS_B$)拟合,公式为

$$\chi_{\rm M} = \frac{Ng^2\beta^2}{kT} \, \frac{\text{0.25} + \text{0.074975} x + \text{0.075235} x^2}{1 + \text{0.9931} x + \text{0.172135} x^2 + \text{0.757825} x^3} + N_{\rm a}.$$

得到的参数为 g = 2.06,J = -1.05 cm⁻¹. 与文献报道的类似结构相比较,如[{Cu₃(di-2-pyridylamine)₃(μ -HPO₄)(μ -PO₄)(H₂O)}(PF₆)(H₂O)₃]_n(J = -4.98 cm⁻¹)[11]以及[Cu

 $\{(C_7H_5N_2)CH_2N(CH_2PO_3H)_2\}\](J = -2.96 \text{ cm}^{-1})^{[12]}$,化合物的 J 值相对较小.

3 结 论

用溶液法合成一个新颖的配位聚合物,中心离子 Cu(II)为六配位,姜-泰勒效应降低了体系能量.相邻的两个 Cu(II)离子与配位的两个羧基形成一个不规则的八边形.配合物磁性研究显示配合物具有反铁磁性.

[参考文献]

- [1] HAGRMAN P J, HAGRMAN D, ZUBIETA J. Organic-Inorganic hybrid materials: from "simple" coordination polymers to organodiamine-templated molybdenum oxides[J]. Angew Chem Int Ed,1999, 38(18): 2638-2684.
- [2] FENG S H, XU R R. New materials in hydrothermal synthesis[J]. Acc Chem Res, 2001,34(3): 239-247.
- [3] 高山,张现发,霍丽华,等.一维链状 4-硝基-3-羧甲基苯异丙酸镉配位聚合物{[Cd(3-CNPP)(Py)₃]·2H₂O)}_n的合成、晶体结构及热稳定性研究[J]. 无机化学学报,2005,21(8):1195-1198.

 GAO S, ZHANG X F, HUO L H, et al. Synthesis, crystal structure and thermal behavior of 1D chain coordination polymer{[Cd(3-CNPP)(Py)₂]·2H₂O}_n with 2-(3-carboxymethyl-4-nitrophenyl) propionic acid ligand[J]. Chinese J Inorg Chem, 2005, 21(8): 1195-1198.
- [4] YAGHIOM, JERNIGANR, LIH, et al. Construction of a new open-framework solid from 1,3,5-cyclohexane-tricarboxylate and zinc(II) building blocks[J]. J Chem Soc Dalton Trans, 1997: 2383-2384.
- [5] CHEN B, OCKWIG N W, MILLWARD A R, et al. High H2 adsorption in a microporous metal-organic framework with open metal sites[J]. Angew Chem Int Ed, 2005,44: 4745-4749.
- [6] ROWSELL J L C, YAGHI O M. Strategies for hydrogen storage in metal-organic frameworks[J]. Angew Chem Int Ed, 2005, 44(30), 4670-4679.
- [7] CHEN B, OCKWIG N W, FRONCZEK F R, et al. Transformation of a metal-organic framework from the NbO to PtS net[1], Inorg Chem, 2005, 44(2): 181-183.
- [8] KOSTAKIS G E, CASELLA L, HADJILIADIS N, et al. Interpenetrated networks from a novel nanometer-sized pseudopeptidic ligand, bridging water, and transition metal ions with cds topology[J]. Chem Commun, 2005, 30: 3859-3861.
- [9] SHELDRICK G M. SHELXL-97, Program for X-ray Crystal Structure Solution [M]. Germany: Göttingen University, 1997.
- [10] SHELDRICK G M. SHELXS-97, Program for the Refinement of Crystal Structures[M]. Germany: Göttingen University, 1997.
- [11] YOUNGME S, PHUENGPHAI P, PAKAWATCHAI C, et al. A novel polymeric trinuclear-based μ₃-phosphato-bridged Cu([]) complex containing two different types of monophosphate; synthesis, structure and magnetism of {[Cu₃(di-2-pyridylamine)3(μ₃, η³-HPO4)(μ₃, η⁴-PO₄)(H₂O)] (PF₆)(H₂O)₃}_n[J]. Inorg Chim Acta, 2005, 358 (6):2125-2128.
- [12] CAO D K, XIAO J, LI Y Z, et al. Metal phosphonates based on { [(Benzimidazol-2-ylmethyl)-imino] bis-(methylene)} bis(phosphonic Acid): syntheses, structures and magnetic properties of the chain compounds [M{($C_7H_5N_2$) CH₂N(CH₂PO₃H)₂}](M = Mn, Fe, Co, Cu, Cd)[J]. Eur J Inorg Chem, 2006(9): 1830-1837.