5 1 IR IS R 22 3 CH SR B O No. 5
2014 4F 9 H Journal of East China Normal University (Natural Science) Sept. 2014

Atricle ID:1000-5641(2014)05-0240-12

Co-OLAP: Research on cooperated OLAP
with star schema benchmark on hybrid
CPU & GPU platform

ZHANG Yu'?, ZHANG Yan-song'*’, ZHANG Bing'?,
CHEN Hong'?, WANG Shan'*?

(1. DEKE Lab, Renmin University of China ., Beijing 100872, China;
2. School of Information, Renmin University of China, Beijing 100872, China;

3. National Survey Research Center at Renmin University of China, Beijing 100872, China)

Abstract: Nowadays GPUs have powerful parallel computing capability even for moderate GPUs
on moderate servers. Opposite to the recent research efforts, a moderate server may be equipped
with several high level CPUs and a moderate GPU, which can provide additional computing power
instead of more powerful CPU computing. In this paper, we focus on Co-OLAP (Cooperated
OLAP) processing on a moderate workstation to illustrate how to make a moderate GPU cooperate
with powerful CPUs and how to distribute data and computation between the balanced computing
platforms to create a simple and efficient Co-OL AP model. According to real world configuration,
we propose a maximal high performance data distribution model based on RAM size, GPU device
memory size, dataset schema and special designed AIR (array index referencing) algorithm. The
Co-OLAP model distributes dataset into host and device memory resident datasets, the OLAP is
also divided into CPU and GPU adaptive computing to minimize data movement between CPU and
GPU memories. The experimental results show that two Xeon six-core CPUs slightly outperform
one NVIDA Quadra 5 000 GPU with 352 cuda cores with SF = 20 SSB dataset, the Co-OLAP
model can assign balanced workload and make each platform simple and efficient.

Key words: GPU; OLAP; Co-OLAP; AIR

CLC number: TP393 Document code: A DOI: 10. 3969/j. issn. 1000-5641. 2014, 05. 021

Co-OLAP: CPU&GPU RS FE& Lt HEERIER
HAEKNE OLAP

% oF, REA, R OE, K o4, IR

(. P E AR K2: DEKE 855, Jbat 1008725 2. i ARKE fFE2BE AL 1008725

e H 3 :2014-06

R LTH - b e A AR 55 25 30 9 4 (12XNQO72, 13XNLFOD

W —AEH KT A R BFR A BFSE 7 A GPULOLAP. E-mail: zyszy511@hotmail. com.
WAFVEH KAEM B W5 YE L B985 100 4 A B 2 L OLAP. E-mail: zhangys_ruc@ hotmail. com.

58 kT, %.Co-OLAP: CPUR.GPU IR & & b i A &2 145 50 3L vfi 19 B W) OLAP () 241

3. HELARI: R E R A S RO L JE R 100872)

E: YT GPUEIE AL BLED BPH 2 op o R 55 4% B0 09 T s GPU W3 45 5 K 19 94731 3 g
J3. AR T30 B A R 5 SR 5 v ot R 55 45 1T RE G B A LB o CPU Al — Hrh iy GPUL GPU fig %
PN T AR g AN R 2 4 te CPU B 9 oK 4 TSR RE). AR SC L AP o TR B 1 Co-
OLAP(HE OLAP) Jg b0y, 4 34 4 fa] {5 v 3 GPU 53, Ky CPU By 7] LA K U fef 76 31525 249 i 1) 5
K- & b 43 A BE A58 DU Co-OLAP #85 RY faf 50T 25 28 ARG S5 B i IC & L J T N A7 45 i, GPU
AT B R AT i (9 ATRCECAL b BE 51 FD 30348 1 T d5 K v PR RE A48 43 M A Y. Co-
OLAP #ERUKEHOE R 40 55 88 T AF A GPU A7 19 %3 4 . OLAP 45t %1 4 % CPU Al GPU
it (4 38 L SR Ak J k. CPU 1 GPU A7 22 [8] 1 BCHE 2 S AR . SE 90 25 R W/R . 7€ SF =
20 1Y SSBOSETE A A HE) W3 b, T B 2258 7S A% A0 38 45 1 PE BE W% A — Bt NVIDA Quadra 5 000
SPU(352 A cuda #%0) B4R B BE . Co-OLAP # 51 a] LUK G 48 3 45 40 A 76 5 ¥ 31587 & 94l
BAT & o] 5T = L

X@HE: GPUEILAM A OLAPURHLA AL Co-OLAP(HpF OLAP); AIR (K4l
k51 D

0 Introduction

Databases severely suffer from performance issues for the data- and computing-inten-
sive workloads such as data warehousing and OLAP. Performance-critical designed IMDBs
(In-memory Database) such as MonetDB, Vectorwise, HANA, Hyper, IWA, have
gained orders of magnitude improvement than the traditional disk resident databases, but
performance is still the most critical issue for a big in-memory dataset due to memory
bandwidth bottleneck and limited processing cores. Nowadays graphic processing units
(GPUs) have been designed to be powerful parallel computing processors with much more
cores than CPUs (thousands of cores vs. tens of cores), and GPU memory has much high-
er memory bandwidth than DRAM(300 + GB/s vs. 80 GB/s). The parallel programming
models, such as CUDA and OpenCL further push GPUs as practical candidate for parallel
computing-intensive engine beyond multicore CPUs. Database community has made signif-

icant approaches in optimizing query processing on GPUs in recent yearst'™

, CO-processor
framework becomes main stream in high performance computer. Even moderate computers
are commonly configured with powerful GPU which can not only provide graphic process-
ing but also additional computing power.

In this paper, we focus on a case study on a moderate workstation configuration with
two Xeon 6-core CPUs(12 cores) and one NVIDA Quadra 5 000 GPU(11 multiprocessors,
352 cuda cores) for standard SSB OLAP optimizations. On data-intensive OLAP work-
load, we find that the processing capability relies more on amount of multiprocessors than
amount of streaming cores. The Xeon CPU platform outperforms GPU platform in our

workstation, and it is common scenario for typical moderate servers. So it is impossible to

use GPU as major accelerator as some researches (commonly configured with low level

242 AR IR I TE R 2= 2= ik (A SR B2 RO 2014 4F

CPU and high level GPU), we have to rethink the hybrid CPU/GPU computing frame-
work. we first design an array oriented storage and processing engine for cooperated CPU
and GPU computing, AIR (array index referencing) algorithm to replace traditional hash
join operator to make star-join efficient both on CPU and GPU platforms, then we assign
GPU as additional star-join engine and CPU as predicate processing and aggregating en-
gines to cooperate for the whole OLAP processing.

The related work are presented in Sec. 1. Co-OLAP is discussed in Sec. 2. Sec. 3

shows the results of experiments. Finally, Sec. 4 summarizes the paper.

1 Related Work

121 GDB™ gives an architecture of re-

GPUs are employed as co-processors for CPUs
lational query Co-Processing on graphic processors. According to cost model for CPU and
GPU, workload is assigned to different processors. Relational operators are optimized for

GPU processing such as GPU joins™*, GPU hashing™ , GPU compression'®” , GPU sor-

[8.9]]

ting , GPU memory contention"'"”, data movement optimizations''”, GPU transaction
execution''” , GPU cost model™®, etc. These significant efforts have verified that GPUs
are good candidate for high performance relational processing due to massive parallel
cores. The major differences between GPU and CPU focus on two aspects: (1) CPU opti-
mizations are cache-conscious designed, the key idea is to fully utilize cache hierarchy to
make frequent dataset closer to the cores, the LLC(last level cache) becomes larger and
larger with increasing cores; GPU equips with the small size of shared memory(32 KB-48
KB), without hardware shared memory management like cache, GPU optimizations need
more programming techniques, and the small size of shared memory is difficult to optimize
strong data locality processing like hash join; GPU commonly relies on hardware threading
mechanism to overlap device memory accessing latency while CPU majorly relies on large
cache. (2) nowadays PCle bandwidth is much lower than memory bandwidth, we must ei-
ther improve PCle transmission performance (e. g. , multiple memory channels, DMA
(Direct Memory Access), pinned memory transmission'') or data distribution to make
computing-intensive workload GPU memory resident.

For OLAP workload, the key issue is the star-join performance. [14,15] discussed
the performances of different multicore parallel hash join algorithms, the results show that
simple nopartitioned hash algorithm is adaptive to star schema with skewed dataset be-

6] can even improve star-join efficien-

tween fact table and dimension tables. Invisible-join
cy by using bitwise operation. Current GPU efforts commonly rely on hash structures for
hash join or hash aggregation, while managing hash structure in GPU is not as efficient as
in CPU. So GPU OLAP algorithms rely on two main considerations, one is to choose high
performance hash join algorithms, the other is to tune algorithms to be adaptive to GPU’

s memory management and hardware architecture. One common barrier is that memory ef-

ficient hash table needs pointers to manage dynamic chained buckets, while it is less effi-

58 kT, %.Co-OLAP: CPUR.GPU IR & & b i A &2 145 50 3L vfi 19 B W) OLAP () 243

cient in GPU for fixed memory management. DDTA-JOIN'"! is a tailored join algorithm
by using foreign key columns as native join indexes for the star-joins. Hash tables are re-
moved from OLAP processing, so they are more adaptive to be used in GPU.,

In general, desktop GPU outperforms CPU. But for moderate server, multi-way
CPUs may outperform GPU in typical configuration. For balanced CPU and GPU plat-
forms, it is not necessary for GPU to realize all the query processing operators, GPU acts
as an additional computing engine instead of a major computing engine, we should focus on
how to distribute data and computing in CPU and GPU memories and cooperate the com-

puting of each platform.

2 Co-OLAP Designs

Co-OLAP model is designed for a distributed OLAP model for GPU and CPU plat-
forms, data distribution strategy is processor-conscious to guarantee minimal data move-
ment overhead and make computing adaptive to processor features.

2.1 Data distribution Model

Star schema is a formula schema for data warehousing, and star schema is widely
studied by commercial databases and academic researches. We focus on star schema opti-
mizations for Co-OLAP in this paper, and snow-flake schema like TPC-H will be studied
in future work.

1. Data distribution of SSB

SSB(star schema benchmark) comprises one fact table and four dimension tables, fact
table comprises four foreign key columns and thirteen measure columns. Dimension tables
are small in sizes with predicate processing on various data types, foreign key columns in
fact table are relative small but frequently accessed for multidimensional queries (star-
joins), and measure columns may be very large in enterprise dataset, but each multidimen-
sional query commonly locates very small dataset (aggregate on dataset with very low mul-
tidimensional selectivity and few measure attributes). So we can first consider the small
dimension tables and foreign key columns to be GPU memory resident candidates.

Dimension tables are small in sizes but with various data types, complex data type
management is adaptive to CPU. Moreover, dimension tables involve many update opera-
tions, CPU can do updates more efficient than GPU. According to these considerations,
we only assign foreign key columns GPU memory resident for the simple data types and
computing-intensive workload of star-join.

2. Data access latency of data distribution

Fig. 1 illustrates a workstation configuration. The device memory of GPU is 2.5 GB,
the main memory is 12 GB, the memory bandwidthes of CPUs are 51. 2 GB/s (four memo-
ry channels with each 12. 8 GB/s bandwidth), the bandwidth of GPU device memory is
120 GB/s, and the PCle bandwidth is maximal 6 GB/s with pinned memory access. The

local memory accesses are efficient for both GPU and CPU, but data movement between

244 HEIR I K 2 2 4l CH AR B2 O 2014 4F

host memory and device memory is quite slow. So we must minimize data movement be-
tween CPU and GPU during query processing. We design a vector oriented OLAP algo-
rithm to reduce PCle transmission overhead by only swapping small dimension vectors and

fact vectors. The detailed design will be illustrated in the following sections.

]

Host Memory Device Memory

Fig. 1 Data distribution

3. Maximal high performance data distribution model

In ideal data distribution model, all the foreign key columns can be GPU memory resi-
dent for CPU bound star-join processing, CPU only responses for predicate processing and
aggregation. To gain this target, GPU memory should contain all the foreign key col-
umns, so we can model the maximal high performance dataset size as:

S=(Serv = Spimvees ~ Skuervee) / Rexs/nutase » 10 which,

S denotes the total dataset size with GPU memory resident computing;

Rk, puasee denotes the proportion of foreign key columns size in whole dataset;

Scru denotes the size of GPU device memory;

Shimves denotes the size of a dimension vector;

Srwvee denotes the size of a fact vector.

With this data distribution model, we can support maximal S dataset to perform com-
pletely cooperated computing with CPU and GPU according to specified GPU memory
size. If we have to deal with larger dataset, we can upgrade hardware platform by add
more GPUs or use higher level GPU with larger GPU memory.

2.2 Array store and AIR algorithm

Storing columns in arrays is widely adopted in main-memory databases(e. g. » Monet-
DB) and GPU database researches. We adopt array store technique, the dimensional col-
umns and measure columns are stored as page-able arrays., the foreign key columns are
stored as pinned arrays to accelerate the transmission performance through PCle bus.

For dimension table, array index can be considered as virtual primary key(VPK). If a

foreign key is assigned with dimensional array index, the join between foreign key column

58 kT, %.Co-OLAP: CPUR.GPU IR & & b i A &2 145 50 3L vfi 19 B W) OLAP () 245

and primary key column can be simplified as foreign key directly accessing dimensional i-
tem with stored dimensional array index. We define this join as Array Index Referencing
(AIR). This new operator requires an additional constraint for star schema that primary
key of dimension table must be defined as 1,2,3+++ which is widely used in SSB and TPC-H
as default (such as part, supplier, customer, date(the 19920101, 19920102, --- format
primary keys can be simply used as array index by current date minus the first date) di-
mension tables in SSB and part, supplier, customer dimension tables in TPC-H). We can
also update foreign key columns for existed dataset as an ETL process.

“'is a column based OLAP algorithm like MonetDB with improvement

Invisible-joint!
on star-join by bitmap bitwising operator, and invisible-join algorithm is also adopted
by""*! GPU algorithm. To make AIR algorithm comparable with invisible-join, we inherit

U710 we will illustrate how AIR works

the query example style algorithm description like
with Q3.1 from star schema benchmark, and compare the detailed process stages with in-
visible-join.
SELECT c. nation, s. nation, d. year, sum(lo. revenue) as revenue
FROM customer AS c, lineorder AS lo,supplier AS s, dwdate AS d
WHERE lo. custkey = c. custkey
AND lo. suppkey = s. suppkey
AND lo. orderdate = d. datekey
AND c. region = "ASIA’
AND s. region = 7ASIA’
AND d. year > = 1992 and d. year <. = 1997
GROUP BY c. nation, s. nation, d. year
ORDER BY d. year asc, revenue desc;

In this query, dimension tables response for providing predicate filters Copposite to
hash tables in[167]) and groups for aggregation. For Q3. 1, the first stage is to apply pred-
icates and GroupBy clauses on dimension tables to generate star-join filters. In Fig. 3, in-
visible-join only applies predicates on dimension tables and uses hash table as star-join fil-
ters, the GroupBy clauses are processed in the end, so dimension tables are accessed twice
in the whole query processing. AIR uses vector as an early-materialized grouping filter.
According to predicates on dimension table, filtered GroupBy keys are organized as array
dictionaries. In dimension vector, positions 1 and 3 are filled with GrpCode array indexes,
position 2 does not satisfy the predicate and is filled with 0. The dimension vector is small
(length of dimension table rows) even for large dataset, foreign key can directly access di-
mension vector to probe whether current fact tuple can go through dimension filter. More-
over, we can pre-generate a multidimensional array Agg[D,]---[D,] as GroupBy contain-
er, where D, (1< =i{<=n) denotes the cardinality of each dimensional array dictionary in
each dimension vector. For example, Fig. 2 can use Aggttt for aggregation.

In star-join stage, invisible-join performs hash table oriented column joins and uses

bitmaps as join results, finally a bitwise AND operator is invoked for star-join result.

246 IR M R 2 2 4l CE SRR 2 O 2014 4F

There are two important issues we should pay attentions: one issue is that OLAP query
commonly has high selectivity(maximal 6/7 in SSB opposite to Fig. 2 example with very
few filtered dimensional tuples) in single dimension table, hash join between foreign key
column and dimension table has high overhead; the other issue is that bitwise operation o-

verhead for big bitmaps is also high and bitmaps consume large space for a big dataset.

Apply region="Aisa’Group by c.nation : : I' ----------------- :

- - 1
cus:key ri‘glf)n rzja;n‘on : Hash table : - custIVec Ggl)fr:)ade :

sia ina : 1
1 =P Withkeys lagp! [i [1] 1
%2} 2 Europe France 1 1and 3 : : {21 0 [2]| India |
ol 3 Asia India : Lol 2 |
| |

| |
Apply region="Aisa’Group by s.nation : | | :
suppkey region nation : : : suppVec GrpCode| :
1] 1 Asia Russia =P Hash table :—}: 1] 1 [1]| Russia 1
2] 2 Europe Spain : Wlt? key : : [2] 0 :
| |

. |
Apply year in [1992,1997]Group by d.year : : | :
dateid year :] : : dateVec GrpCode :
(1701019997 | 1997 | ooy L) g [l 1997 | 1
= cys > ey 1 |
[2]01029997 | 1997 101021997,and |1 I [
[——] | s P R R, -

Dimension tables processing stage: Invisible-join AIR

Fig.2 The first stage of predicate processing on sample data

In Fig. 3, AIR algorithm makes star-join even simple and efficient. Assume that orde-
rdate column can be on-the-fly converted with array index of date table. We use a fact vec-
tor as star-join filter. As scanning custkey column, each key is mapped to custVec to up-
date relative fact vector item with custkey value. For suppkey column, we perform a

positional scan according to fact vector’ s non-zero positions, and then updating fact vector

Invisible-join AIR
orderkey custkey suppkey | |orderdate revenue custkey suppkey derd: Teyenue
1 3 1 01019997 43256 3 2 1 2 1 2 43256
2 3 2 01019997 33333 3 2 2 0 1 0 33333
3 2 1 01029997 12121 2 0 ! 0 2 0 12121
4 1 1 01029997 23233 1 1 1 1 2 1 23233
5 2 2 01029997, 45456 2 0 2 0 2 0 45456
6 1 2 01039997 13251 1 1 2 0 3 0 43251
7 3 2 01039997 34235 3 2 2 0 3 0 34235
probe Ly probe AIR AIR AIR
Hash table Hash table 1 Hash table with 1 custVec suppVec dateVec
With keys With key 1 1 keys 01011997, 1 i 1 i 1 " 1
1and 3 - 0 01021997, and 0 2l 0 121 0 2l 1
Matching fact t 1 01031997 1 B3l 2 B3l 1
able bitmap for 3 X
cust. Dim. join 9

1

1
n Fact table
tuples that

satisfy all join

- m predicates
L
o]

Fig. 3 The second stage of star-join on sample data

58 kT, %.Co-OLAP: CPUR.GPU IR & & b i A &2 145 50 3L vfi 19 B W) OLAP () 247

according to suppVec mapping. The fact vector is iteratively updated with GroupBy multi-
dimensional array indexes(mapping 3-D array index to 1-D array index) , when finishing all
the foreign key scans, the fact vector can identify which fact rows are to be output for ag-
gregation and the aggregation unit address for each fact tuple.

With AIR algorithm, hash tables are replaced with simple vectors, array index refer-
encing on small dimension vectors is very efficient for cache locality.

Column store commonly employs late-materialization strategy. Invisible-join has to
access foreign key columns twice, one for foreign key join, one for extracting final foreign

key and joining with dimensional column for GroupBy values as shown in Fig. 4.

1
0
0 Invisible-join
1) AIR
0] :
0 nation
custkey 0 China i revenue Agg[2][1][1]

3 France | 43256 23233 | 43256

3 | India : n 33333 Decoding

2 ' 1 |0] 12121 jmmmmEmmmmy

1 Bitmap | _ Position | _ [India | | 23233 | [GwCode] |

2 velg 1] allookup China | 1 [0] 45456 i (17| China | 1

- extraction : n 43251 : [2]| India :

3 : o] 34235 : :
Tl nation : : [1] :
I—a— Russia : : —— :

Spain | H -,-p ode| |

? . N |] |

- Bl":lap _ E\ Position | _ : g ————

> ex:/l: ‘l:lt?on positions allookup Russia b I Query results

2 i [China | Russia | 1997 | 23233 |

2 dateid | year . | India | Russia | 1997 | 43256 |

01019997 1997 |
orderdate 01029997| 1997 :
01019997 01039997] 1997 !
01019997 - \
01029997 B“/;';'uaep _ - _ !
01029997 extraction values 1997 :
01029997 H
01039997 I
01039997 -

Fig. 4 The third stage of aggregation on sample data

Opposite to invisible-join, AIR employs early- materialization strategy. In dimension
processing stage, GroupBy values are encoded into dimension vectors and pre-generate
multidimensional array for final aggregation. The star-join stage iteratively refreshes fact
vector with pre-assigned multidimensional array addresses, so the aggregation stage can be
independently performed without accessing dimensional columns or foreign key columns a-
gain. Fig. 4 shows the aggregation stage of AIR, a positional lookup according to fact vec-
tor is performed on measure columns, the value is extracted and pushed to aggregation ar-
ray Aggl[2][1][1] for aggregating. Finally, aggregation array is converted into aggrega-
ting results by mapping array indexes to dimension array dictionary to extract each group-
ing attributes.

In AIR algorithm, a standard OLAP query processing is divided into three independ-

248 AR IR I TE R 2= 2= ik (A SR B2 RO 2014 4F

ent stages, the input and output data are all small. Star-join is a computing- intensive
workload with fixed columns and can be assigned to GPU; aggregation involves large data-
set but simple processing, this data-intensive workload is CPU adaptive.

The Co-OLAP model can be illustrated in Fig. 1. All the data are memory resident,
and foreign key columns are GPU memory resident. CPU processes query and generates
dimension vectors, the small vectors are transferred to GPU memory through PCle bus,
GPU performs star-join with dimension vectors and generates fact vector, the fact vector is
transferred back to CPU memory, then CPU performs a positional scan on measure col-
umns for aggregation.

For CPU programming, we can use a dynamic vector template class as fact vector to
only store filtered fact tuple positions and GroupBy addresses. For high selective queries,
the dynamic wector oriented fact vector needs less space and avoids scanning the whole fact
vector. For GPU programming, we maintain a pre-allocated pinned array as a fact vector.
Star-join is multiple-pass vector processing between equal length arrays, and it is adaptive
to be programmed with CUDA. We did not use dynamic wvector like CPU because GPU is
less efficient than CPU in dynamic memory management, fixed length fact vector can satis-
fy all the queries with different selectivity. Star-join in CPU has better code efficiency than
in GPU, but GPU has much more processing cores and higher device memory bandwidth

than CPU, the overall performance is convincing.
3 Case Studies

In this paper. we design experiments in a moderate workstation to exploit how to
maximize the hardware performance. Our experiments are conducted on a Lenovo worksta-
tion with two IntelR XeonR Processor E5-2667 (6-core, 15M Cache, 2. 90 GHz), 12 GB
memory, maximal memory bandwidth 51. 2 GB/s, PCle channel bandwidth 6 GB/s with
pinned memory. The GPU type is NVIDA Quadro 5000, the configurations are as fol-
lows: 352 cuda cores(11 multiprocessors), 2.5 GB GDDR5, 320 bit bus width, 120 GB/s
bandwidth. The prices of two CPUs and one GPU are equal (~20,000 RMB). The OS
version is ubuntu-12. 04 (precise)64-bit, kernel Linux 3. 8. 0-29-generic, CUDA version is
5.5. We use star schema benchmark(SSB) dataset of SF =20 with standard SSB data gen-
erator.

3.1 GPU memory resident

For Co-OLAP model, the foreign key columns are GPU memory resident, small di-
mension vectors are on-the-fly transferred from host memory to device memory for each
ad-hoc query, and only fact vector needs to be transferred from device memory to host
memory. The total size of four foreign key columns plus one fact vector is about 2. 39GB,
95. 6% GPU memory is utilized. The GPU memory is maximal utilized and we can support
maximal SF =20 dataset for GPU memory resident Co-OLAP.

3.2 CPU memory resident

58 kT, %.Co-OLAP: CPUR.GPU IR & & b i A &2 145 50 3L vfi 19 B W) OLAP () 249

The average predicate processing time is 10. 24 ms in CPU, dimension vectors are
transferred from host to device memory with average 0. 23 ms under 6GB/s pinned transfer
bandwidth. In star-join stage, each foreign key column is parallel scanned with AIR algo-
rithm on dimension vectors and updating fact vector. The star-join execution time(average
73% in total execution time) is influenced by dimension vector size, selectivity and amount
of foreign key columns. The fact vector is transferred from device to host memory with a-
bout 20. 89 ms. With the fact vector, aggregation is executed efficiently in CPU on large
measure columns with average 5. 33 ms. In the whole Co-OLAP processing stages, star-
join is computing-intensive workload on GPU memory resident foreign key columns. For
big dataset, dimension vectors usually exceed the small shared memory size(48 KB), array
index referencing involves many global memory access latency. In general, shared memory
can hardly contain strong locality dataset such as dimension vectors or hash table, GPU’s
SIMT (Single Instruction Multiple Threads) mechanism uses hardware threads to overlap
device memory access latency.

For further analysis on Co-OLAP, we compare SSB performance of CPU AIR algo-
rithm, Co-OLAP model (CPUR.GPU memory resident AIR algorithm) and open-source
column-oriented MonetDB with version Feb2013-SP6 (http://www. monetdb. org/down-
loads/deb/). We execute each query for 3 times and use the minimal time as execution
time to eliminate I/O overhead for MonetDB. In our 12-core workstation, shown as
Fig. 5, the average execution time of MonetDB is 571. 87 ms. The average execution time
of Co-OLAP is 136. 36 ms. CPU AIR algorithm outperforms both Co-OLAP and Monet-
DB, the average execution time is 89. 06 ms. Co-OLAP model is 4. 2 X faster than Monet-
DB with GPU accelerator and 6. 4 X faster than MonetDB with multicore CPUs.

2000
1800 L
1600
1400

£ 1200 /I \v‘\
.°’ 1000
o A / NS

400
200

ms

Tim

0 ; : . T . T - - : - : -
QL1Q12Q130Q210Q220Q230Q3.10Q320Q3.3Q3.40Q4.1 Q42 Q43 AVG
== MonetDB #—=Co-OLAP == CPUI AIR algorithm

Fig.5 Performance comparison for different Co-OLAPs

GPU OLAP commonly employs hash join algorithms and the overall performance is u-

1 the performance gains rely on GPU’s hard-

sually lower than column based MonetDB"
ware performance opposite to algorithm efficiency. AIR algorithm is special designed for
GPU vectorized processing and the algorithm efficiency is also higher than conventional

hash join algorithms and MonetDB on multicore platform.

250 AR T 2 2 4 CH SRR 22 O 2014 4

CPU AIR algorithm still outperforms Co-OLAP even if we do not consider transfer
cost, the pure star-join execution time for CPU and GPU platform is 89. 06 ms and 99. 67
ms, the main reasons lie in two aspects:

¢ Dimension vectors in SSB dataset(SF =20) amount to 1. 62 MB which are far less
than CPU’s L3 cache size but far larger than GPU’ s shared memory size, so star-join
stage gains better cache locality in CPU than in GPU.

 CPU AIR algorithm employs dynamic vector as fact vector to avoid sequential scan
on fact vector, programming for GPU is less efficient than for CPU.

As a summary, one GPU’s processing performance is approximately equal to process-
ing performance of two CPUs in our experiments. For concurrent queries, half workloads
can be assigned to CPUs and the remainder workload can be assigned to GPU and CPUs

with Co-OLAP model, the server’s performance can be doubled.
4 Conclusion

Different from many researches, we first focus on GPU-aware OLAP framework re-
search instead of GPU-able relational operator optimizations, AIR algorithm is superior to
in-memory database on both CPU platform and GPU platform. Co-OLAP model focuses
on GPU memory resident computing strategy to maximize GPU computing power and min-
imize PCle bus transmission overhead by assigning computing-intensive workload for
GPU. Co-OLAP can also model the platform processing power by either configuring GPUs
according to dataset size or give the maximal high performance Co-OLAP dataset size ac-

cording to GPU memory size.

[References]

[1] GOVINDARAJU N K., LLOYD B, WANG W, et al. Fast computation of database operations using graphics pro-
cessors [C]//SIGMOD Conference. 2004.

[2] HEB, LIUM, YANG K, et al. Relational query coprocessing on graphics processors[J]. ACM Transactions on
Database Systems, 2009, 34(4).

[3] HE B, YANG K, FANG R, ey al. Relational joins on graphics processors[C]//SIGMOD, 2008:511 - 524,

[4] PIRK H, MANEGOLD S, KERSTEN M. Accelerating foreign-key joins using asymmetric memory channels
[C]//ADMS, 2011.

[5] ALCANTARA D A, SHARF A. ABBASINEJAD F, et al. Real-time parallel hashing on the gpu[J]. ACM Trans
Graph, 2009,28(5).

[6] AO N, ZHANG F, WU D, et al. Efficient parallel lists intersection and index compression algorithms using
graphics processing units[J]. PVLDB, 2011.

[7] FANG W, HE B, LUO Q. Database compression on graphics processors[C]//VLDB, 2010.

[8] GOVINDARAJU N, GRAY J. KUMAR R, et al. Gputerasort: high performance graphics co-processor sorting
for large database management[C]//SIGMOD, 2006.

[9] SATISH N, KIM C, CHHUGANI J, et al. Fast sort on cpus and gpus: a case for bandwidth oblivious simd sort
[C]//SIGMOD. 2010.

[10] SITARIDI E, ROSS K. Ameliorating memory contention of olap operators on gpu processors[C]//DaMoN, 2012
39-47.

$5W KT .%.CoOLAP. CPURGPU IB& -4 b 1 52 T 858 5L i i B[] OLAP(3%) 251

[11]

[12]
[13]

[14]

[15]

[16]

[17]

WU H, DIAMOS G, CADAMBI S, et al. Kernel weaver: automatically fusing database primitives for efficient
gpu computation[C]//MICRO-45. 2012.

HE B, YU J X. High-throughput transaction executions on graphics processors[J]. PVLDB, 2011.

YUAN Y, LEE R B, ZHANG X D. The yin and yang of processing data warehousing queries on GPU devices[]].
PVLDB,2013, 6(10): 817-828.

BLANAS S, LI Y, PATEL J. Design and evaluation of main memory hash join algorithms for multi-core cpus
[C]//SIGMOD, 2011 37 - 48.

BALKESEN C, TEUBNER J, ALONSO G, et al. Main-memory hash joins on multi-core cpus: Tuning to the un-
derlying hardware[C]//ICDE, 2013.

ABADI D J, MADDEN S, HACHEM N. Column-stores vs. row-stores: how different are they really? [C]//
SIGMOD Conference. 2008: 967-980.

ZHANG Y S, WANG S, LU J H. Improving performance by creating a native join-index for OLAP[]]. Frontiers
of Computer Science in China, 2011, 5(2): 236-249,

(REHE F 2)

