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Biharmonic hypersurfaces with at most two
distinct principal curvatures in E"*!
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Abstract: In this paper, we studied biharmonic hypersurfaces of pseudo-Euclidean space
E"*! with at most two distinct principal curvatures. Assume the shape operator is diago-
nalizable, we proved that such hypersurfaces are minimal.
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0 Introduction

Let  : M* — E? be an isometric immersion of an m-dimensional submanifold M;" of a

—
pseudo-Euclidean space E. Denote by H and A the mean curvature vector field of M and
the Laplace operator of M, with respect to the induced metric. The submanifold M" is said

to be biharmonic if it satisfies the equation
AH =0. (1)

If the mean curvature vector field H of the submanifold M" vanishes identically, then M is

called minimal. Clearly, every minimal submanifold of E” satisfies (1).
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As remarked, minimal submanifolds are biharmonic ones. Conversely, the natural question
is whether any biharmonic submanifold is minimal. In fact, [1-3] gave examples of nonminimal
biharmonic surfaces in pseudo-Euclidean spaces.

However, biharmonicity implies minimality in some special cases. Indeed, it was proved
in [3] that any biharmonic surface in E2 (s = 1,2) is minimal. It was shown in [4] that every
biharmonic hypersurface M2 of E2 (s = 0,1, 2, 3,4) whose shape operator is diagonal is minimal.

Naturally, we want to consider the same problem in n-dimensional pseudo-Euclidean space
E? (s =0,1,---,n). In this paper, we study the minimality of biharmonic hypersurface M
with at most two distinct principal curvatures in (n + 1)-dimensional pseudo-Euclidean space
E?*! and prove the following theorem.

Theorem Let M be a nondegenerate biharmonic hypersurface with at most two distinct
principal curvatures of the (n + 1)-dimensional pseudo-Euclidean space EMT1. Assume that the
shape operator of M]" is diagonalizable. Then M must be minimal.

Remark A shape operator of a Riemannian submanifold is always diagonalizable, but

for pseudo-Riemannian submanifolds, there may be other forms for A (cf. [5]).

1 Preliminaries

Let x : M — E"*! be an isometric immersion of a hypersurface M (r =0,1,--- ,n) in
Ertl(s=0,1,---,n+1),r < s. The hypersurface M can itself be endowed with a Riemannian
or a pseudo-Riemannian metric structure, depending on whether the metric induced on M
from the pseudo-Riemannian space E?T, is positive-definite or indefinite.

Let & denote a unit normal vector field with (£,&) = &, e = +1. Denote by V and V the
Levi-Civita connections of M and E"*! respectively. For any vector fields X,Y tangent to

M, the Gauss formula is given by
VxY = VxY +h(X, V),

where h is the scalar-valued second fundamental form. If we denote by A the shape operator

of M]" associated to &, the Weingarten formula is given by

where (A(X),Y) = eh(X,Y). The mean curvature vector H= H¢ with H = LetrA, deter-
mines a well defined normal vector field to M in E?T!. The Codazzi and Gauss equations are
given by (cf. [5])

(VxA)Y = (VyA)X, (2)
R(Xv Y)Z = <A(Y)7 Z>A(X) - <A(X)7 Z>A(Y)7 (3)

where
R(X,Y)ZZVXVyZ—VyVXZ—V[X_’y]Z. (4)

A hypersurface M of E?T! is said to be biharmonic, if

—
AH =0.
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The condition is equivalent to (cf. [1])
AH = {2A(VH) +neH(VH)} + {AH + e HtrA?}¢ = 0.

By comparing the vertical and horizontal parts of the above equation, this is equivalent to the

conditions
A(VH) = —gaH(VH), (5)

AH + eHtrA* =0, (6)

where the Laplace operator A acting on scalar-valued function f is given by (cf. [1])

Af == eileief = Veeif), (7)
i=1
where {e1,ea, -+ ,e,} is a local orthonormal frame of T),(M*) with (e;, e;) = ¢; = £1.

2 Proof of the theorem

If H is a constant, then (6) implies that Htr A2 = 0. If H is zero, the result follows.
Otherwise, tr A* = 0 implies that AT + A3 + -4+ A2 = 0,80 Ay = Ay = --- = A, = 0. Since
trA=X+X+---+ )\, =neH, we obtain that H = 0.

Now, assume that H is not a constant, we will end up with a contradiction.

When H is not a constant, VH # 0. According to (5), VH is an eigenvector of the
shape operator A. Without loss generality, we can choose VH in the direction of e;, and

therefore the shape operator of M takes the form with respect to a suitable orthonormal

frame {ej, ez, -+ ,en}
A1
A2
A= ,
An
where \; = —geH. If the shape operator A has only one principal curvature, i.e.
n
/\12/\22'-'2/\n=—§8H,

then tr A = —%ZEH. On the other hand, tr A = neH. So —%QEH = neH, which is a contradic-
tion as H is not a constant.
From now on, we assume that the shape operator A has two different principal curvatures.

Let us express VH as
VH = Elel(H)el + EQGQ(H)GQ + -4 Enen(H)en.
Since we choose VH in the direction of eq, it follows that

e1(H)#0, ex(H)=e3(H)=---=en(H)=0. (8)
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For any 4,5 = 1,2,---,n, let V.e; = >0, wfjek. By using compatibility conditions to
Ve, (€i,e;) =0 and Ve, (e;, ;) =0, we obtain

T Jo_ i
Wi = 0, Wiy = —&i&jWej» (9)

for i # j and i, j,k =1,2,--- ,n. Since \; = —5eH, we get

61()\1)750, 62()\1)263()\1):"-:en()\l):(). (10)

The Codazzi equation (2) for hypersurfaces implies the equations
(Ve,A)ejej) = ((Ve, A)eis ;) and (Ve A)ej, ex) = ((Ve, Aei, ex).
A straightforward calculation gives
ei(N) = (A = X)wh, (11)
i = A)wiy = (A = A wly, (12)
for distinct ¢,j,k =1,2,--- ,n.
We claim that A; # Ay for j = 2,--- ,n. Indeed, if A\; = A1, we have from (11) that

0= (A =Xl =e1(N) =er(M),

which contradicts to (10).

Taking into account the fact A\; # Ay for j = 2,---,n and the assumption that the
hypersurfaces M have two distinct principal curvatures, we denote Ao = Az = --- = A\, =
and pu # A\1. Since H = %strA, it follows that

3n
=" _.m
F=om—1)°

Consider equations (11) for j = 1,4 # 1, combining (9) and (10), we get
w%i :wil =0, =12 ,n.

Fori=1,7# 1 in (11), combining (9) we obtain

; 361(H) 361(H)
Jo— TV Lo_ P S 1
71 (7’L+2)H, w;] 5153 (7’L+2)H ( 3)

w

Using equation (12) for i = 1,5 # k and k,j = 2,3, -+ ,n, combining (9), we have
wil = w,ij =0.

Applying the above equations, we find that

k 2
Ve,e1 =0, Ve e = E wiiek, Ve, €1 =Wy €,
k#1,i
2 k k
Ve,6i = —€16,w5€1 + g Wik, Ve €j = g W;i€ks
k#1,i k#1,j
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where w3, = — (B;Sjrgl[){, for distinct ¢,j and 4,7 =2,3,--- ,n.

Applying Gauss equation (3) and the definition (4) of the curvature tensor to

(R(e1,ez2)er, ea), it is easy to check that

2 3n® 2 2 \2
e1(wy) = mﬁlﬂ — (w31)"

Using (7), (8) and the formulas of V,e;, it follows from (6) that

(n+8)n*H3

—crere1(H) — (n — 1)51W§161(H) te An—-1 0.

By differentiating (13) with j = 2 along e1, and using (14), we get

n?(n+2) 4

(n+2)(n+5)
4(n—1)

6161(H) = 9

H(ng)Q — €1

Substituting (16) into (15), combining (13), we have

(n+2)(—2n+ 8)( 2 )2 _ n%(n +2) +en?(n+8)

H[El 9 w2 i(n—1) HQ} =0,

and as H # 0, it follows that

e (n+ 2)(;2” +38) (w2,)? —

n%(n +2) +en?(n + 8)

H? =0.
4(n—1) 0

Acting on (17) with e; and using (13) and (14), then

(n+2)(—2n+8)
9

n?(n +2)(—n+ 10+ e(n + 8))

(w§1)2 - 12(”— 1)

€1
Eliminating w3, from (17) and (18), we obtain that
H? =0,

which leads to H = 0, a contradiction.
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