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Abstract: In this paper, we studied biharmonic hypersurfaces of pseudo-Euclidean space

E
n+1
s

with at most two distinct principal curvatures. Assume the shape operator is diago-

nalizable, we proved that such hypersurfaces are minimal.
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0 Introduction

Let x : Mm
r → E

n
s be an isometric immersion of an m-dimensional submanifold Mm

r of a

pseudo-Euclidean space E
n
s . Denote by

−→
H and ∆ the mean curvature vector field of Mm

r and

the Laplace operator of Mm
r with respect to the induced metric. The submanifold Mm

r is said

to be biharmonic if it satisfies the equation

∆
−→
H = 0. (1)

If the mean curvature vector field
−→
H of the submanifold Mm

r vanishes identically, then Mm
r is

called minimal. Clearly, every minimal submanifold of E
n
s satisfies (1).
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As remarked, minimal submanifolds are biharmonic ones. Conversely, the natural question

is whether any biharmonic submanifold is minimal. In fact, [1-3] gave examples of nonminimal

biharmonic surfaces in pseudo-Euclidean spaces.

However, biharmonicity implies minimality in some special cases. Indeed, it was proved

in [3] that any biharmonic surface in E
3
s (s = 1, 2) is minimal. It was shown in [4] that every

biharmonic hypersurface M3
r of E

4
s (s = 0, 1, 2, 3, 4) whose shape operator is diagonal is minimal.

Naturally, we want to consider the same problem in n-dimensional pseudo-Euclidean space

E
n
s (s = 0, 1, · · · , n). In this paper, we study the minimality of biharmonic hypersurface Mn

r

with at most two distinct principal curvatures in (n + 1)-dimensional pseudo-Euclidean space

E
n+1
s , and prove the following theorem.

Theorem Let Mn
r be a nondegenerate biharmonic hypersurface with at most two distinct

principal curvatures of the (n + 1)-dimensional pseudo-Euclidean space E
n+1
s . Assume that the

shape operator of Mn
r is diagonalizable. Then Mn

r must be minimal.

Remark A shape operator of a Riemannian submanifold is always diagonalizable, but

for pseudo-Riemannian submanifolds, there may be other forms for A (cf. [5]).

1 Preliminaries

Let x : Mn
r → E

n+1
s be an isometric immersion of a hypersurface Mn

r (r = 0, 1, · · · , n) in

E
n+1
s (s = 0, 1, · · · , n+1), r 6 s. The hypersurface Mn

r can itself be endowed with a Riemannian

or a pseudo-Riemannian metric structure, depending on whether the metric induced on Mn
r

from the pseudo-Riemannian space E
n+1
s , is positive-definite or indefinite.

Let ξ denote a unit normal vector field with 〈ξ, ξ〉 = ε, ε = ±1. Denote by ∇ and ∇̃ the

Levi-Civita connections of Mn
r and E

n+1
s respectively. For any vector fields X, Y tangent to

Mn
r , the Gauss formula is given by

∇̃XY = ∇XY + h(X, Y )ξ,

where h is the scalar-valued second fundamental form. If we denote by A the shape operator

of Mn
r associated to ξ, the Weingarten formula is given by

∇̃Xξ = −A(X),

where 〈A(X), Y 〉 = εh(X, Y ). The mean curvature vector
−→
H = Hξ with H = 1

n
εtrA, deter-

mines a well defined normal vector field to Mn
r in E

n+1
s . The Codazzi and Gauss equations are

given by (cf. [5])

(∇XA)Y = (∇Y A)X, (2)

R(X, Y )Z = 〈A(Y ), Z〉A(X) − 〈A(X), Z〉A(Y ), (3)

where

R(X, Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z. (4)

A hypersurface Mn
r of E

n+1
s is said to be biharmonic, if

∆
−→
H = 0.
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The condition is equivalent to (cf. [1])

∆
−→
H = {2A(∇H) + nεH(∇H)} + {∆H + εHtrA2}ξ = 0.

By comparing the vertical and horizontal parts of the above equation, this is equivalent to the

conditions

A(∇H) = −
n

2
εH(∇H), (5)

∆H + εHtrA2 = 0, (6)

where the Laplace operator ∆ acting on scalar-valued function f is given by (cf. [1])

∆f = −

n∑

i=1

εi(eieif −∇ei
eif), (7)

where {e1, e2, · · · , en} is a local orthonormal frame of Tp(M
n
r ) with 〈ei, ei〉 = εi = ±1.

2 Proof of the theorem

If H is a constant, then (6) implies that Htr A2 = 0. If H is zero, the result follows.

Otherwise, tr A
2 = 0 implies that λ2

1 + λ2
2 + · · · + λ2

n = 0, so λ1 = λ2 = · · · = λn = 0. Since

tr A = λ1 + λ2 + · · · + λn = nεH , we obtain that H = 0.

Now, assume that H is not a constant, we will end up with a contradiction.

When H is not a constant, ∇H 6= 0. According to (5), ∇H is an eigenvector of the

shape operator A. Without loss generality, we can choose ∇H in the direction of e1, and

therefore the shape operator of Mn
r takes the form with respect to a suitable orthonormal

frame {e1, e2, · · · , en}

A =




λ1

λ2

. . .

λn




,

where λ1 = −n
2 εH . If the shape operator A has only one principal curvature, i.e.

λ1 = λ2 = · · · = λn = −
n

2
εH,

then trA = −n2

2 εH . On the other hand, tr A = nεH . So −n2

2 εH = nεH , which is a contradic-

tion as H is not a constant.

From now on, we assume that the shape operator A has two different principal curvatures.

Let us express ∇H as

∇H = ε1e1(H)e1 + ε2e2(H)e2 + · · · + εnen(H)en.

Since we choose ∇H in the direction of e1, it follows that

e1(H) 6= 0, e2(H) = e3(H) = · · · = en(H) = 0. (8)
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For any i, j = 1, 2, · · · , n, let ∇ei
ej =

∑n

k=1 ωk
ijek. By using compatibility conditions to

∇ek
〈ei, ei〉 = 0 and ∇ek

〈ei, ej〉 = 0, we obtain

ωi
ki = 0, ω

j
ki = −εiεjω

i
kj , (9)

for i 6= j and i, j, k = 1, 2, · · · , n. Since λ1 = −n
2 εH , we get

e1(λ1) 6= 0, e2(λ1) = e3(λ1) = · · · = en(λ1) = 0. (10)

The Codazzi equation (2) for hypersurfaces implies the equations

〈(∇ei
A)ej , ej〉 = 〈(∇ej

A)ei, ej〉 and 〈(∇ei
A)ej , ek〉 = 〈(∇ej

A)ei, ek〉.

A straightforward calculation gives

ei(λj) = (λi − λj)ω
j
ji, (11)

(λi − λj)ω
j
ki = (λk − λj)ω

j
ik, (12)

for distinct i, j, k = 1, 2, · · · , n.

We claim that λj 6= λ1 for j = 2, · · · , n. Indeed, if λj = λ1, we have from (11) that

0 = (λ1 − λj)ω
j
j1 = e1(λj) = e1(λ1),

which contradicts to (10).

Taking into account the fact λj 6= λ1 for j = 2, · · · , n and the assumption that the

hypersurfaces Mn
r have two distinct principal curvatures, we denote λ2 = λ3 = · · · = λn = µ

and µ 6= λ1. Since H = 1
n
εtrA, it follows that

µ =
3n

2(n − 1)
εH.

Consider equations (11) for j = 1, i 6= 1, combining (9) and (10), we get

ω1
1i = ωi

11 = 0, i = 1, 2, · · · , n.

For i = 1, j 6= 1 in (11), combining (9) we obtain

ω
j
j1 = −

3e1(H)

(n + 2)H
, ω1

jj = ε1εj

3e1(H)

(n + 2)H
. (13)

Using equation (12) for i = 1, j 6= k and k, j = 2, 3, · · · , n, combining (9), we have

ω
j
k1 = ω1

kj = 0.

Applying the above equations, we find that

∇e1
e1 = 0, ∇e1

ei =
∑

k 6=1,i

ωk
1iek, ∇ei

e1 = ω2
21ei,

∇ei
ei = −ε1εiω

2
21e1 +

∑

k 6=1,i

ωk
iiek, ∇ei

ej =
∑

k 6=1,j

ωk
ijek,
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where ω2
21 = − 3e1(H)

(n+2)H , for distinct i, j and i, j = 2, 3, · · · , n.

Applying Gauss equation (3) and the definition (4) of the curvature tensor to

〈R(e1, e2)e1, e2〉, it is easy to check that

e1(ω
2
21) =

3n2

4(n − 1)
ε1H

2 − (ω2
21)

2. (14)

Using (7), (8) and the formulas of ∇ei
ej, it follows from (6) that

−ε1e1e1(H) − (n − 1)ε1ω
2
21e1(H) + ε

(n + 8)n2H3

4(n − 1)
= 0. (15)

By differentiating (13) with j = 2 along e1, and using (14), we get

e1e1(H) =
(n + 2)(n + 5)

9
H(ω2

21)
2 − ε1

n2(n + 2)

4(n − 1)
H3. (16)

Substituting (16) into (15), combining (13), we have

H
[
ε1

(n + 2)(−2n + 8)

9
(ω2

21)
2 −

n2(n + 2) + εn2(n + 8)

4(n − 1)
H2

]
= 0,

and as H 6= 0, it follows that

ε1
(n + 2)(−2n + 8)

9
(ω2

21)
2 −

n2(n + 2) + εn2(n + 8)

4(n − 1)
H2 = 0. (17)

Acting on (17) with e1 and using (13) and (14), then

ε1
(n + 2)(−2n + 8)

9
(ω2

21)
2 −

n2(n + 2)(−n + 10 + ε(n + 8))

12(n− 1)
H2 = 0. (18)

Eliminating ω2
21 from (17) and (18), we obtain that

H2 = 0,

which leads to H = 0, a contradiction.
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