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Abstract: We gave a new proof of the generalized Craig-Sakamoto theorem, which asserts
that two normal matrices A and B satisfy det(I — aA — bB) = det(I — aA)det(I — bB) for
all complex numbers a and b if and only if AB = O.
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0 Introduction

Let C be the field of complex numbers. We denote by M,, ,, the set of all m x n matrices
over C. M, , will be abbreviated as M,,. In particular, C" := M, 1, which means the set of all
n-tuples column vectors. The operator norm on My, , induced by the Euclidean norm is called

the spectral norm, denoted by
[Allcc = max{||Az]z : [|all2 =1,z € C"},

where ||-||2 is the Euclidean norm on C™. It is well known that the spectral norm of || 4| equals
to the largest singular value of A. Let A € M, . If m > n, then the singular values of A are
defined to be the nonnegative square roots of the eigenvalues of A* A. If m < n, then the singular

values of A are defined to be the nonnegative square roots of the eigenvalues of A A*. We always
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denote the singular values of A € M, in decreasing order by s1(A) > s2(A) = --- = s,(A).
The Craig-Sakamoto theorem on the independence of two quadratic forms can be stated as
follows.

Theorem 0.1 Let A and B be n x n real symmetric matrices. Then det(I—aA—bB) =
det(I — aA)det(I — bB) for all real numbers a and b if and only if AB = O.

One may see [1,2] for the history and the importance of this result. Many proofs of
Theorem 0.1 can be found in [3-8]. Using the similar idea due to Zhang and Yil®, we provide
a new version of Craig-Sakamoto theorem and give the proof.

Theorem 0.2  TLet A, B € M, be normal matrices. Then det(I — aA — bB) =
det(I — aA)det(I— bB) for all complex numbers a and b if and only if AB = O.

1 Main result

Our proof depends on Lemma 1.1, whose proof can be found in the Theorem 4.5 of [10].

Lemma 1.10'9 If B is an 7 x t submatrix of A € M, then s;(A) > s;(B), where
1 <4 < min{r,¢}. In particular, || Ao = || Bl|oo-

Proof of Theorem 0.2 The part (<) is clear. We only need show the converse. Suppose
det(I—aA — bB) = det(I— aA) det(I— bB) for all complex numbers a and b. Hence

det(I — c(A + B)) = det(I — cA)det(I — cB)
for any nonzero complex numbers c¢. Thus
det(:I— (A + B)) = —det(:I— A)det(-I— B) (1.1)
Z’ﬂ

for any nonzero complex numbers z. Suppose A has aj,as, - ,as as its nonzero eigenvalues
and B has by, ba, -+ ,b; as nonzero eigenvalues. By equation (1.1), it follows that the nonzero
eigenvalues of A + B are {a1,az2, -+ ,as,b1,b2, -+ ,b;}. Since the characteristic polynomial’s
degrees of matrix A, B, and A + B are all n, equation (1.1) shows that the sum number of
the zero roots of the characteristic polynomial det(zI — A) and det(zI — B) is greater than or
equals to n, therefore, the number of their nonzero roots s 4t is less than or equals to n. Thus
s+t < n.

Case s+t =n:Let Ay = diag(ai,az, -+ ,as) and By = diag(by, ba, -+ ,b;). With-

A O O O
out loss of generality, we assume that A = ! , B=U U and U =
O O 0 B
U U
" 72 s unitary. We will show that Uy = Oy and Uz = Oy
Us1 Uz

Since U is unitary, it follows that Ui, Uiz + Use Usa = L and Usy Uy + Uz Uy = L.

By straight calculation, we have
I U A O I (0]
A+ B— 12 1 '
O Uy 0O B U, U,

det(A + B) = det(Aq)det(By)det( Us,)det( Usz).

Thus
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det(U§2 U22) = det(Ugg U;2) = det( U§2)det(U22) =1.

Since U,y is a submatrix of U, it follows that 1 = ||Ule = || Usallec and || Ul =
U3 Usallow = ||[Ua2Usslloe = $1(UsqUaa) = s1(UxUs,) < 1. Note that for positive
semidefinite matrices, singular values and eigenvalues are the same. In fact, det(Us, Usz) =
[T, si(Usy Usz). Thus s1(Usy Usg) = s2(Usy Usg) = -+ = s4(Usy Usz) = 1. Thus each eigen-

value of Us, Usg equals to 1. Therefore each eigenvalue of I; — Us, Uso equals to 0. Since
U, Uip = I — Uy, Usy

is positive semidefinite, it follows that Ujs = O ;. Similar, we have Uy = O, . Therefore
AB=0.

Case s-+t < n: Note that the rank of a normal matrix equals the number of its nonzero
eigenvalues, since the singular values of a normal matrix are the module of its eigenvalues. Thus
rank(A) + rank(B) = s + t. Note that

A
rank (B) < rank(A) + rank(B) = s+ ¢ < n.

Thus there exists a unitary matrix Uy = (uy, ug, -+, u,) such that B u; = 0,1 =
1,2,--- ,n— s —t. Note that if C € M,, is normal, then the null space N'(C) equals to the null

space N (C™). Thus (A

*

*

) w=0,i=1,2,--- 'n—s—t. By straight calculation, we have

UBAUOZ(O O),UgBUOZ(O 0), (12)
O A 0O By

where Ag, By € M. It is easy to check that Ay, By are normal matrices. On one hand, by
equation (1.2), we have A and A have the same nonzero eigenvalues a1, ag, - - ,as and B and
By have the same nonzero eigenvalues by, ba, -+ ,b;. On the other hand, by equation (1.1), it
follows that the nonzero eigenvalues of Ag + By are {aj,as, - ,as,b1,b2,--- ,b:} and Ag, By

and Ay + By satisfy equation (1.1) and Case (1). Thus AgBy = O and so AB = O.
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