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0 Introduction

According to B.-Y. Chen[1], one of the most important problems in submanifold theory

is to find simple relationships between the main extrinsic invariants and the main intrinsic

invariants of a submanifold. Related with famous Nash embedding theorem[2], B.-Y. Chen

introduced a new type of Riemannian invariants, known as δ-invariants[3-5]. The author’s

original motivation was to provide answers to a question raised by S. S. Chern concerning

the existence of minimal isometric immersions into Euclidean space[6]. Therefore, B.-Y. Chen
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obtained a necessary condition for the existence of minimal isometric immersion from a given

Riemannian manifold into Euclidean space and established inequalities for submanifolds in

real space forms in terms of the sectional curvature, the scalar curvature and the squared

mean curvature[7]. Later, he established general inequalities relating δ(n1, · · · , nk) and the

squared mean curvature for submanifolds in real space forms[8]. Similar inequalities also hold

for Lagrangian submanifolds of complex space forms. In [9], B.-Y. Chen proved that, for any

δ(n1, · · · , nk), the equality case holds if and only if the Lagrangian submanifold is minimal.

This interesting phenomenon inspired people to look for a more sharp inequality. In 2007, T.

Oprea improved the inequality on δ(2) for Lagrangian submanifolds in complex space forms[10].

Recently, B.-Y. Chen and F. Dillen established general inequalities for submanifolds in complex

space forms and provided some examples showing these new improved inequalities are best

possible[11]. However, it was pointed out[12] that the proof of the general inequality given[11]

is incorrect when
∑k

i=1
1

2+ni
> 1

3 . In [13], B.-Y. Chen, F. Dillen, J. Van der Veken and L.

Vrancken corrected the proof of the general inequality in the case n1 + · · ·+nk < n and showed

that the inequality can be improved in the case n1 + · · · + nk = n.

Such invariants and inequalities have many nice applications to several areas in

mathematics[14]. Afterwards, many papers studied similar problems for different submani-

folds in various ambient spaces, like complex space forms[15], Sasakian space forms[16], (κ, µ)-

contact space forms[17], Lorentzian manifold[18], Euclidean space[19] and locally conformal al-

most cosymplectic manifolds[20].

Recently, C. Özgür and A. Mihai proved Chen’s inequalities for submanifolds of real space

forms endowed with a semi-symmetric non-metric connection[21]. In this paper, we generalize

a result of paper [21]. Moreover, we show that a result of C. Özgür and A. Mihai [21, Theorem

4.1] is incorrect. For the sake of correcting the result, we establish Chen-Ricci inequalities

for submanifolds of real space forms endowed with a semi-symmetric non-metric connection in

Section 3.

1 Preliminaries

To meet the requirements in the next sections, here, the basic elements of the theory

of Riemannian manifolds endowed with a semi-symmetric non-metric connection are briefly

presented. A more complete elementary treatment can be found in [23,24].

Let Nn+p be an (n + p)−dimensional Riemannian manifold with Riemannian metric g

and the linear connection ∇. For vector fields X, Y on Nn+p the torsion tensor field T of the

linear connection ∇ is defined by T (X, Y ) = ∇XY −∇Y X − [X, Y ]. A liner connection ∇ is

said to be a semi-symmetric connection if the torsion tensor T of the connection ∇ satisfies

T (X, Y ) = φ(Y )X − φ(X)Y , where φ is a 1-form on Nn+p. Further, if ∇ satisfies ∇g = 0,

then ∇ is called a semi-symmetric metric connection[22]. If ∇g 6= 0, then ∇ is called a semi-

symmetric non-metric connection[23]. Suppose ∇̂ is the Levi-Civita connection of N . Following

[23], we define a semi-symmetric connection ∇ given by

∇XY = ∇̂XY + φ(Y )X,
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where φ is a 1-form on N . This clearly is a semi-symmetric non-metric connection. As φ is a

1-form we can introduce a dual vector field P by

g(P, X) = φ(X). (1.1)

Let Mn be an n-dimensional submanifold of an (n+ p)-dimensional real space form Nn+p

of constant sectional curvature c endowed with the semi-symmetric non-metric connection ∇

and the Levi-Civita connection ∇̂. On Mn we consider the induced semi-symmetric non-metric

connection denoted by ∇ and the induced Levi-Civita connection denoted by ∇̂. Let R be the

curvature tensor of Nn+p with respect to ∇ and R̂ the curvature tensor of Nn+p with respect

to ∇̂. We also denote by R and R̂ the curvature tensors associated to ∇ and ∇̂.

The Gauss formulas with respect to ∇, respectively ∇̂, can be written as the following

∇XY = ∇XY + h(X, Y ), ∇̂XY = ∇̂XY + ĥ(X, Y ),

for any vector fields X , Y on Mn, where h is a (0, 2) symmetric tensor on Mn and ĥ is the

second fundamental form associated to Levi-Civita connection ∇̂. According to formula (3.4)

in [24] we have

h = ĥ. (1.2)

The curvature tensor R̂ with respect to ∇̂ on Nn+p is expressed by

R̂(X, Y , Z, W ) = c[g(X, Z)g(Y , W ) − g(Y , Z)g(X, W )], (1.3)

and the curvature tensor R with respect to ∇ on Nn+p can be written as[23]

R(X, Y , Z, W ) = R̂(X, Y , Z, W ) + s(Y , Z)g(X, W ) − s(X, Z)g(Y , W ), (1.4)

for any vector fields X, Y , Z, W on N , where s is a (0, 2)-tensor field defined by

s(X, Y ) = (∇̂Xφ)Y − φ(X)φ(Y ).

From (1.3) and (1.4) it follows that the curvature tensor R can be expressed as

R(X, Y , Z, W ) = c[g(X, Z)g(Y , W ) − g(Y , Z)g(X, W )]

+s(Y , Z)g(X, W ) − s(X, Z)g(Y , W ). (1.5)

Decompsing the vector field P on M uniquely into its tangent and normal components

PT and P⊥, respectively, we have P = PT + P⊥. From [24], for any vector fields X , Y , Z, W

on Mn the Gauss equation with respect to the semi-symmetric non-metric connection is

R(X, Y, Z, W ) =R(X, Y, Z, W ) + g(h(X, Z), h(Y, W )) − g(h(X, W ), h(Y, Z))

+ g(P⊥, h(Y, Z))g(X, W ) − g(P⊥, h(X, Z))g(Y, W ). (1.6)

In Nn+p we can choose a local orthonormal frame e1, · · · , en, en+1, · · · , en+p, such that,

restricting to Mn, e1, e2, · · · , en are tangent to Mn. We write hr
ij = g(h(ei, ej), er). The
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squared length of h is ‖h‖2 =
n∑

i,j=1

g(h(ei, ej), h(ei, ej)) and the mean curvature vector is H =

1
n

n∑
i=1

h(ei, ei). We denote λ =
n∑

i=1

s(ei, ei).

Let π ⊂ TxMn, x ∈ Mn, be a 2-plane section. Denote by K(π) the sectional curvature of

Mn respect to the induced semi-symmetric non-metric connection ∇. Then the scalar curvature

of Mn with respect to ∇ is given by

τ =
∑

16i<j6n

K(ei ∧ ej). (1.7)

Let L be an l-dimensional subspace of TxM , x ∈ M , l > 2 and {e1, · · · , el} an orthonormal

basis of L. We define the scalar curvature τ(L) of the l-plane L by

τ(L) =
∑

16α<β6l

K(eα ∧ eβ). (1.8)

For simplicity we put

Ψ(L) =
1

2

l−1∑

i=1

[s(ei, ei) + φ(h(ei, ei))]. (1.9)

For an integer k > 0 we denote by S(n, k) the set of k-tuples (n1, · · · , nk) of integers > 2

satisfying n1 < n and n1 + · · ·+ nk 6 n. We denote by S(n) the set of unordered k-tuples with

k > 0 for a fixed n. For each k-tuples (n1, · · · , nk) ∈ S(n), B.-Y. Chen defined a Riemannian

invariant δ(n1, · · · , nk) as follows[8]

δ(n1, · · · , nk)(x) = τ(x) − S(n1, · · · , nk)(x), (1.10)

where S(n1, · · · , nk)(x) = inf{τ(L1) + · · · + τ(Lk)} and L1, · · · , Lk run over all k mutually

orthogonal subspaces of TxM such that dimLj = nj , j ∈ {1, · · · , k}. In particular, we have

δ(2) = τ(x) − infK, where K is the sectional curvature. For each (n1, · · · , nk) ∈ S(n), we put

c(n1, · · · , nk) =

n2
(
n + k − 1 −

k∑
j=1

nj

)

2
(
n + k −

k∑
j=1

nj

) , d(n1, · · · , nk) =
1

2

[
n(n − 1) −

k∑

j=1

nj(nj − 1)
]
.

We shall use the following lemmas.

Lemma 1.1[7] Let a1, a2, · · · , an, b be (n + 1)(n > 2) real numbers such that

( n∑

i=1

ai

)2

= (n − 1)
( n∑

i=1

a2
i + b

)
,

then 2a1a2 > b, with equality holding if and only if a1 + a2 = a3 = · · · = an.

Lemma 1.2 Let f(x1, x2, · · · , xn) be a function in R
n defined by f(x1, x2, · · · , xn) =

x1

n∑
i=2

xi. If x1 + x2 + · · ·+ xn = 2ε, then we have f(x1, x2, · · · , xn) 6 ε2, with equality holding

if and only if x1 = x2 + x3 + · · · + xn = ε.
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Proof From x1 + x2 + · · · + xn = 2ε, we have

n∑

i=2

xi = 2ε − x1.

It follows that

f(x1, x2, · · · , xn) = x1(2ε − x1) = −(x1 − ε)2 + ε2,

which represents Lemma 1.2 to prove.

2 Chen’s general inequalities

Theorem 2.1 Let Mn, n > 3, be an n-dimensional submanifold of an (n+p)-dimensional

real space form Nn+p of constant sectional curvature c endowed with a semi-symmetric non-

metric connection, then we have

δ(n1, · · · , nk) 6c(n1, · · · , nk) ‖ H ‖2 +d(n1, · · · , nk)c

−
(n − 1)

2
λ −

n2 − n

2
φ(H) +

k∑

j=1

Ψ(Lj), (2.1)

for any k-tuples (n1, · · · , nk) ∈ S(n). The equality case of (2.1) holds at x ∈ Mn if and

only if there exist an orthonormal basis {e1, · · · , en} of TxM and an orthonormal basis

{en+1, · · · , en+p} of T⊥
x M such that the shape operators of Mn in Nn+p at x have the fol-

lowing forms:

Aen+1
=




a1 0 · · · 0

0 a2 · · · 0
...

...
. . .

...

0 0 · · · an




, Aer
=




Ar
1 · · · 0 0
...

. . .
...

...

0 · · · Ar
k 0

0 · · · 0 µrI




, r = n + 2, · · · , n + p,

where a1, · · · , an satisfy

a1 + · · · + an1
= · · · = an1+···+nk−1+1 + · · · + an1+···+nk

= an1+···+nk+1 = · · · = an

and each Ar
j is a symmetric nj × nj submatrix satisfying trace(Ar

1) = · · · = trace(Ar
k) = µr. I

is an identity matrix.

Remark 2.2 For δ(2), inequality (2.1) is due to Özgür and Mihai[21, Theorem 3.1].

Proof Let x ∈ Mn and {e1, e2, · · · , en} and {en+1, en+2, · · · , en+p} be orthonormal basis

of TxMn and T⊥
x Mn, respectively, such that the mean curvature vector H is in the direction

of the normal vector to en+1. For convenience, we set

ai = hn+1
ii , i = 1, 2, · · · , n,

b1 = a1, b2 = a2 + · · · + an1
, b3 = an1+1 + · · · + an1+n2

, · · · ,

bk+1 = an1+···+nk−1+1 + · · · + an1+n2+···+nk−1+nk
,

bk+2 = an1+···+nk+1, · · · , bγ+1 = an,

∆1 = {1, · · · , n1}, · · · , ∆k = {(n1 + · · · + nk−1) + 1, · · · , n1 + · · · + nk},

∆k+1 = (∆1 × ∆1) ∪ · · · ∪ (∆k × ∆k).
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Let L1, · · · , Lk be mutually orthogonal subspaces of TxM with dimLj = nj , defined by

Lj = Span{en1+···+nj−1+1, · · · , en1+···+nj
}, j = 1, · · · , k.

From (1.1), (1.5)—(1.9) we have

τ(Lj) =
nj(nj − 1)

2
c − Ψ(Lj) +

n+p∑

r=n+1

∑

αj<βj

[hr
αjαj

hr
βjβj

− (hr
αjβj

)2], (2.2)

2τ = n(n − 1)c − (n − 1)λ + n2 ‖ H ‖2 −(n2 − n)φ(H)− ‖ h ‖2 . (2.3)

We can rewrite (2.3) as

n2 ‖ H ‖2= (‖ h ‖2 +η)γ,

or equivalently,

(

n∑

i=1

hn+1
ii )2 = γ[

n∑

i=1

(hn+1
ii )2 +

∑

i6=j

(hn+1
ij )2 +

n+p∑

r=n+2

n∑

i,j=1

(hr
ij)

2 + η], (2.4)

where

η = 2τ − 2c(n1, · · · , nk)H2 − n(n − 1)c + (n − 1)λ + (n2 − n)φ(H), (2.5)

γ = n + k −
k∑

j=1

nj.

From (2.4) we have

(

γ+1∑

i=1

bi)
2 = γ[η +

γ+1∑

i=1

b2
i +

∑

i6=j

(hn+1
ij )2 +

n+p∑

r=n+2

n∑

i,j=1

(hr
ij)

2 − 2
k∑

j=1

∑

µj<νj

aµj
aνj

],

where µj , νj ∈ ∆j , for all j = 1, · · · , k. Applying Lemma 1.1, we derive

k∑

j=1

∑

µj<νj

aµj
aνj

>
1

2
[η +

∑

i6=j

(hn+1
ij )2 +

n+p∑

r=n+2

n∑

i,j=1

(hr
ij)

2],

it follows that

k∑

j=1

n+p∑

r=n+1

∑

µj<νj

[hr
µjµj

hr
νjνj

− (hr
µjνj

)2] >
η

2
+

1

2

n+p∑

r=n+1

∑

(µ,ν)/∈∆k+1

(hr
µν)2 +

n+p∑

r=n+2

∑

µj∈∆j

(hr
µjµj

)2

>
η

2
. (2.6)

From (2.2) and (2.6) we have

k∑

j=1

τ(Lj) >

k∑

j=1

[
nj(nj − 1)

2
c − Ψ(Lj)] +

1

2
η. (2.7)

Using (1.10), (2.5) and (2.7), we derive the desired inequality.
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The equality case of (2.1) at a point x ∈ M holds if and only if we have the equality in all

the previous inequalities and also in Lemma 1.1. Hence, from (1.2) the shape operators take

the desired forms.

As an application of Theorem 2.1, we have the following

Corollary 2.3 If a Riemannian n-manifold Mn (n > 3) admits an isometric immersion

into a real space form Nn+p of constant curvature c endowed with a semi-symmetric non-metric

connection whose δ-invariant satisfies

δ(n1, · · · , nk) > d(n1, · · · , nk)c −
(n − 1)

2
λ +

k∑

j=1

Ψ(Lj)

at some points in Mn for some (n1, · · · , nk) ∈ S(n), then Mn is not minimal.

3 Chen-Ricci inequalities

In [25], B.-Y. Chen established a sharp relationship between the Ricci curvature and the

squared mean curvature for any n-dimensional Riemannian submanifold of a real space form

Rm(c) of constant sectional curvature c as follows

Theorem 3.1(See [25, Theorem 4]) Let M be an n-dimensional submanifold of a real

space form Rm(c). Then the following statements are true.

(1) For each unit vector X ∈ TpM , we have

‖H‖2
>

4

n2
[Ric(X) − (n − 1)c]. (3.1)

(2) If H(p) = 0, then a unit vector X ∈ TpM satisfies the equality case of (3.1) if and only

if X belongs to the relative null space N (p) given by

N (p) = {X ∈ TpM | h(X, Y ) = 0, ∀Y ∈ TpM}.

(3) The equality case of (3.1) holds for all unit vectors X ∈ TpM if and only if either p is

a geodesic point or n = 2 and p is an umbilical point.

Afterwards, many papers studied similar problems for different submanifolds in various

ambient manifolds[26-28], one proves the results similar to that of Theorem 3.1. In [23], C. Özgür

and A. Mihai proved that

Theorem 3.2(See [21, Theorem 4.1]) Let Mn be an n-dimensional submanifold of an

(n + p)-dimensional real space form Nn+p(c) endowed with a semi-symmetric non-metric con-

nection. Then

(i) For each unit vector X in TxM we have

Ric(X) 6 (n − 1)c +
n2‖ H ‖2

4
−

n − 1

2
λ +

(n − 1)(n − 2)

2
s(X, X) −

n2 − n

2
φ(H). (3.2)

(ii) If H(x) = 0, then a unit tangent vector X at x satisfies the equality case of (3.2) if

and only if X ∈ N (x) = {X ∈ TxMn | h(X, Y ) = 0, ∀Y ∈ TxMn}.

(iii) The equality case of inequality (3.2) holds for all unit tangent vectors at x if and only

if either x is a totally geodesic point, or n = 2 and x is a totally umbilical point.
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Remark 3.3 For n 6= 2, if the equality case of (3.2) holds for all unit tangent vectors X

at x, from Theorem 3.2, we know that hr
ij = 0, ∀i, j, r. Further, using (1.5) and (1.6) we have

Ric(X) =

n∑

i=2

R1i1i = (n − 1)c − (n − 1)s(X, X)− (n − 1)φ(h(X, X)),

here is a contradiction with the equality case of (3.2).

Remark 3.4 For n = 2, if the equality case of (3.2) holds for all unit tangent vectors

X at x, from Theorem 3.2, we know that hr
11 = hr

22, h
r
12 = 0, r = 3, · · · , 2 + p. Further, using

(1.5) and (1.6) we have

Ric(X) = R1212 = c − s(X, X) − φ(h(X, X))+ ‖ H ‖2,

here is also a contradiction with the equality case of (3.2).

Remark 3.5 In the proof of Theorem 4.1 in [21], they wrote

Kij = R̃(ei, ej, ej , ei) + g(h(ei, ei), h(ej , ej)) − g(h(ei, ej), h(ei, ej))

= c − s(ej , ej) +

n+p∑

r=n+1

[hr
iih

r
jj − (hr

ij)
2].

But according to the formula (3.2) and (3.3) in [21], we get

Kij = R̃(ei, ej, ej , ei) + g(h(ei, ei), h(ej , ej)) − g(h(ei, ej), h(ei, ej)) − φ(h(ej , ej))

= c − s(ej , ej) +

n+p∑

r=n+1

[hr
iih

r
jj − (hr

ij)
2] − φ(h(ej , ej)).

This is the reason they made a mistake. We should notice that the Gauss equation with

respect to the semi-symmetric non-metric connection is very different from the Gauss equation

with respect to the Levi-Civita connection.

Under these circumstances it becomes necessary to give a theorem, which could present a

sharp inequality between the Ricci-curvature and the squared mean curvature with respect to

the semi-symmetric non-metric connection.

According to the equation (3.1) in [21], denote by

Ω(X) = s(X, X) + g(P⊥, h(X, X)) (3.3)

for a unit vector X tangent to Mn at a point x. We remark that Ω doesn’t depend on X and

denote it simply by Ω. Detailed explanations were given in the proof of Theorem 3.1 in [21].

In this paper we prove

Theorem 3.6 Let Mn be an n-dimensional submanifold of an (n + p)-dimensional real

space form Nn+p of constant sectional curvature c, endowed with a semi-symmetric non-metric

connection. For each unit vector X in TxM we have

Ric(X) 6 (n − 1)(c − Ω) +
n2

4
‖ H ‖2 . (3.4)
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The equality holds for all unit tangent vectors on Mn if and only if either Mn is a totally

geodesic submanifold in Nn+p or n = 2 and M2 is a totally umbilical submanifold.

Remark 3.7 We should point out that our approach is different from B.-Y. Chen’s.

Proof Let x ∈ Mn and {e1, e2, · · · , en} and {en+1, en+2, · · · , en+p} be orthonormal basis

of TxMn and T⊥
x Mn, respectively, such that X = e1. From the equation (1.5), (1.6) and (3.3)

we have

Rijij = c − s(ei, ei) − g(P⊥, h(ei, ei)) +

n+p∑

r=n+1

[hr
iih

r
jj − (hr

ij)
2]

= c − Ω(ei) +

n+p∑

r=n+1

[hr
iih

r
jj − (hr

ij)
2]

= c − Ω +

n+p∑

r=n+1

[hr
iih

r
jj − (hr

ij)
2]. (3.5)

Using (3.5) one gets

Ric(X) =

n∑

i=2

R1i1i 6 (n − 1)(c − Ω) +

n+p∑

r=n+1

n∑

i=2

hr
11h

r
ii. (3.6)

Let us consider the quadratic forms fr : R
n → R, defined by fr(h

r
11, h

r
22, · · · , hr

nn) =
n∑

i=2

hr
11h

r
ii. We consider the problem maxfr, subject to Γ : hr

11 + hr
22 + · · ·+ hr

nn = kr, where kr

is a real constant. From Lemma 1.2, we see that the solution (hr
11, h

r
22, · · · , hr

nn) of the problem

in question must satisfy

hr
11 =

n∑

j=2

hr
jj =

kr

2
, (3.7)

with the following holds

fr 6
(kr)2

4
. (3.8)

From (3.6) and (3.8) we have

Ric(X) 6 (n − 1)(c − Ω) +

n+p∑

r=n+1

(kr)2

4
= (n − 1)(c − Ω) +

n2

4
‖ H ‖2 .

Next, we shall study the equality case. For each unit tangent vector X at x, if the equality

case of inequality (3.4) holds, from (3.6) and (3.7) we have

hr
1i = 0, i 6= 1, ∀ r, (3.9)

hr
11 + hr

22 + · · · + hr
nn − 2hr

11 = 0, ∀ r. (3.10)

For all unit tangent vectors at x, if the equality case of inequality (3.4) holds, by computing

Ric(ei), i = 2, 3, · · · , n and combining (3.9) and (3.10) we have

hr
ij = 0, i 6= j, ∀ r; hr

11 + hr
22 + · · · + hr

nn − 2hr
ii = 0, ∀ i, r.
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We can distinguish two cases:

(1) n 6= 2, hr
ij = 0, i, j = 1, 2, · · · , n, r = n + 1, · · · , n + p or

(2) n = 2, hr
11 = hr

22, h
r
12 = 0, r = 3, · · · , 2 + p.

Then the equality case holds for all unit tangent vectors on Mn if and only if either Mn

is a totally geodesic submanifold in Nn+p or n = 2 and M2 is a totally umbilical submanifold.

Theorem 3.8 If H(x) = 0, then a unit vector X ∈ TxM satisfies the equality case of

(3.4) if and only if X belongs to the relative null space N (x) given by

N (x) = {X ∈ TxM | h(X, Y ) = 0, ∀Y ∈ TxM}.

Proof Assume H(x) = 0. For each unit vector X ∈ TxM , equality holds in (3.4) if and

only if (3.7) and (3.9) holds. Then hr
1i = 0, ∀i, r, i.e. X ∈ N (x).
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