Article ID: 1000-5641(2015)01-0027-15

Cells of the weighted Coxeter group $(\widetilde{\boldsymbol{B}_3},\widetilde{\ell})$

${ m MI~Qian\mbox{-}qian^1}, ~~{ m SHI~Jian\mbox{-}yi^2}$

Department of Foundamental Courses, Wuxi Institute of Technology, Wuxi Jiangsu 214121, China;
 Department of Mathematics, East China Normal University, Shanghai 200241, China)

Abstract: The affine Coxeter group (\widetilde{B}_3, S) can be realized as the fixed point set of the affine Coxeter group $(\widetilde{D}_4, \widetilde{S})$ under a certain group automorphism α with $\alpha(\widetilde{S}) = \widetilde{S}$. Let $\widetilde{\ell}$ be the length function of \widetilde{D}_4 . We gave an explicit description for all the left cells of the weighted Coxeter group $(\widetilde{B}_3, \widetilde{\ell})$. Also, we showed that in the the weighted Coxeter groups $(\widetilde{D}_4, \widetilde{\ell})$ and $(\widetilde{B}_3, \widetilde{\ell})$, each left (respectively, two-sided) cell was left-connected (respectively, two-sided-connected).

Key words: weighted Coxeter group; quasi-split case; cells; left-connectedness

CLC number: O Document code: A DOI: 10.3969/j.issn.1000-5641.2015.01.004

加权 Coxeter 群 $(\widetilde{B}_3,\widetilde{\ell})$ 的胞腔

米倩倩1, 时俭益2

(1. 无锡职业技术学院 基础课部, 江苏 无锡 214121; 2. 华东师范大学 数学系, 上海 200241)

摘要: 仿射 Coxeter 群 (\widetilde{B}_3, S) 可以被看做仿射 Coxeter 群 $(\widetilde{D}_4, \widetilde{S})$ 在满足条件 $\alpha(\widetilde{S}) = \widetilde{S}$ 的某种群自同构 α 下的不动点集合. 设 $\widetilde{\ell}$ 是 \widetilde{D}_4 的长度函数. 本文明显地刻画了加权 Coxeter 群 $(\widetilde{B}_3, \widetilde{\ell})$ 的所有左胞腔. 同时证明了: 加权 Coxeter 群 $(\widetilde{D}_4, \widetilde{\ell})$ 和 $(\widetilde{B}_3, \widetilde{\ell})$ 的所有左胞腔都是左连通的, 所有双边胞腔都是双边连通的.

关键词: 加权 Coxeter 群; 拟分裂情形; 胞腔; 左连通性

0 Introduction

In his book [1], Lusztig introduced a weighted Coxeter group (W, L), which is, by definition, a Coxeter system (W, S) together with a weight function $L: W \longrightarrow \mathbb{Z}$. He proposed a bundle

收稿日期: 2013-12

基金项目: 国家自然科学基金(11071073, 11131001); 教育部高校博士点基金(1439864); 上海市科委基金(11XD1402200)

第一作者: 米倩倩, 女, 讲师. 研究方向为代数群. E-mail: minaiqnaiq@163.com.

第二作者: 时俭益, 男, 教授. 研究方向为代数群、代数组合论. E-mail: jyshi@math.ecnu.edu.cn.

of conjectures, intending to generalize many results on cells of W in the equal parameter case to the unequal parameters case. The most successful part for such a generalization is when (W, L) is in a certain quasi-split case, that is, W can be realized as the fixed point set of a finite or an affine Coxeter system $(\widetilde{W}, \widetilde{S})$ under a certain group automorphism α with $\alpha(\widetilde{S}) = \widetilde{S}$, and the weight function L is the restriction to W of the length function ℓ of W (see [2–5]). Lusztig conjectured in [6] that any left cell of an affine Weyl group is left-connected in the split case. The left-connectedness is a good structural property for a left cell. We now extend this conjecture to any weighted Coxeter group by proposing the following conjecture:

Conjecture A The left (respectively, two-sided) cells of any weighted Coxeter group are left-connected (respectively, two-sided-connected).

Though it has been verified in many split cases (see [7–10]), as well as in certain quasi-split cases (see [5]) by Shi, Conjecture A still remains open up to now.

In the present paper, we consider the affine Coxeter group $W = \widetilde{B}_3$ in the quasi-split case where W is realized as the fixed point set of the affine Coxeter group $\widetilde{W} = \widetilde{D}_4$ under the group automorphism α determined by $\alpha(s_i) = s_i$, $0 \le i \le 2$ and $\alpha(s_j) = s_k$ for $j \ne k$ in $\{3, 4\}$, where the Coxeter generator set $\widetilde{S} = \{s_i \mid 0 \le i \le 4\}$ of \widetilde{D}_4 satisfies $o(s_i s_2) = 3$ and $o(s_i s_j) = 2$ for $i \ne j$ in $\{0, 1, 3, 4\}$.

Shi described the left cells of \widetilde{D}_4 in [11]. Later he designed some algorithms and provided some criteria in his study of left-connectedness of left cells in [10,12]. Based on these results, we shall give a description for all the left cells of the weighted Coxeter group $(\widetilde{B}_3, \widetilde{\ell})$ and prove that all the left (respectively, two-sided) cells of the weighted Coxeter groups $(\widetilde{D}_4, \widetilde{\ell})$ and $(\widetilde{B}_3, \widetilde{\ell})$ are left-connected (respectively, two-sided-connected), where $\widetilde{\ell}$ is the length function of the Coxeter system $(\widetilde{D}_4, \widetilde{S})$.

The contents of the paper are organized as follows. Section 1 is served as preliminaries, where we collect some concepts, terms and known results. Then we introduce some known results on the groups \widetilde{D}_4 and \widetilde{B}_3 in Section 2. We prove the left-connectedness for all the left cells in \widetilde{D}_4 in Section 3. Finally, we give an explicit description for all the cells of $(\widetilde{B}_3, \widetilde{\ell})$ and show that each left (respectively, two-sided) cell of the weighted Coxeter group $(\widetilde{B}_3, \widetilde{\ell})$ is left-connected (respectively, two-sided-connected) in Section 4.

1 Preliminaries

The results in 1.1-1.5 and 1.7 follow Lusztig in [1].

1.1 Let (W, S) be a Coxeter system with ℓ its length function and \leq the Bruhat-Chevalley ordering on W. An expression $w = s_1 s_2 \cdots s_r \in W$ with $s_i \in S$ is called reduced if $r = \ell(w)$. By a weight function on W, we mean a map L from W to the integer set \mathbb{Z} satisfying that L(s) = L(t) for any $s, t \in S$ conjugate in W and that $L(w) = L(s_1) + L(s_2) + \cdots + L(s_r)$ for any reduced expression $w = s_1 s_2 \cdots s_r$ in W. (W, L) is called a weighted Coxeter group.

A weighted Coxeter group (W, S) is called in the split case if $L = \ell$.

Suppose that there exists a group automorphism $\alpha: W \to W$ with $\alpha(S) = S$. Let $W^{\alpha} = \{w \in W | \alpha(w) = w\}$. For any α -orbit J on S, let $w_J \in W^{\alpha}$ be the longest element in

the subgroup W_J of W generated by J whenever the cardinal $|W_J|$ of the set W_J is finite. Let S_α be the set of elements w_J with J ranging over all such α -orbits in S. Then (W^α, S_α) is a Coxeter group and the restriction to W^α of the length function $\ell: W \to \mathbb{N}$ is a weight function on W^α . The weighted Coxeter group (W^α, ℓ) is called in the quasi-split case.

- **1.2** Let $\mathcal{A} = \mathbb{Z}[v, v^{-1}]$ be the ring of Laurent polynomials in an indeterminate v with integer coefficients. Denote $v_w = v^{L(w)}$ for any $w \in W$. Define a ring involution $a \mapsto \overline{a}$ of \mathcal{A} by setting $\overline{\sum_i a_i v^i} = \sum_i a_i v^{-i}$, where $a_i \in \mathbb{Z}$. Define $\mathcal{A}_{\leq m} = \{f \in \mathcal{A} | \deg f \leq m\}$ for any $m \in \mathbb{Z}$.
- **1.3** For any $w, x, y, z \in W$ and $s \in S$ with sx < x < y < sy, define $p_{z,w}, M_{x,y}^s \in \mathcal{A}$ recurrently by the following requirements:
 - $(1.3.1) \ p_{z,w} = 0 \ \text{if} \ z \nleq w, p_{w,w} = 1 \ \text{and} \ p_{z,w} \in \mathcal{A}_{<0} \ \text{if} \ z < w;$
- (1.3.2) $p_{z,w} = v_s^{\epsilon} p_{z,sw} + p_{sz,sw} \sum_{z \leqslant z' < sw,sz' < z'} M_{z',sw}^s p_{z,z'}$ for z < w and sw < w, where $\epsilon = 1$ if sz < z, and $\epsilon = -1$ if sz > z (see [1, The proof of Theorem 6.6]);
 - $(1.3.3) \ \underline{\sum_{x \leqslant z < y, sz < z} M_{z,y}^s p_{x,z}} \equiv v_s p_{x,y} (\bmod \mathcal{A}_{<0});$
 - $(1.3.4) \ \overline{M_{x,y}^s} = M_{x,y}^s.$

The condition (1.3.3) determines the coefficients of v^k in $M_{x,y}^s$ for all $k \ge 0$; then (1.3.4) determines all the other coefficients (see [1, Proposition 6.3]).

- 1.4 Define a preorder \leqslant (respectively, \leqslant) on W which is transitively generated by the relation $y \leftarrow w$ (respectively, $y \leftarrow w$), where w < sw, and either y = sw or $M_{y,w}^s \neq 0$ (respectively, w < ws, and either y = ws or $M_{y^{-1},w^{-1}}^s \neq 0$) holds for some $s \in S$. The equivalence relation associated to this preorder is denoted by $\underset{L}{\sim}$ (respectively, $\underset{R}{\sim}$). The corresponding equivalence classes in W are called left cells (respectively, right cells) of W. Write $y \leqslant w$ in W, if there exists a sequence $y_0 = y, y_1, \cdots, y_r = w$ in W with some r > 0 such that for every $1 \leqslant i \leqslant r$, either $y_{i-1} \leqslant y_i$ or $y_{i-1} \leqslant y_i$ holds. The equivalence relation associated to the preorder \lesssim is denoted by $\underset{LR}{\sim}$ and the corresponding equivalence classes in W are called two-sided cells of W.
- **1.5** For $w \in W$, define $\mathcal{L}(w) = \{s \in S | sw < w\}$ and $\mathcal{R}(w) = \{s \in S | ws < w\}$. If $y, w \in W$ satisfy $y \leq w$ (respectively, $y \leq w$), then $\mathcal{R}(y) \supseteq \mathcal{R}(w)$ (respectively, $\mathcal{L}(y) \supseteq \mathcal{L}(w)$). In particular, if $y \underset{L}{\sim} w$ (respectively, $y \underset{R}{\sim} w$), then $\mathcal{R}(y) = \mathcal{R}(w)$ (respectively, $\mathcal{L}(y) = \mathcal{L}(w)$) (see [1, Lemma 8.6]).
- 1.6 In [7, Chapter 13], Lusztig defined a function $a:W\to\mathbb{N}\cup\{\infty\}$ in terms of structural coefficients of the Hecke algebra associated to (W,L). Then he proved the following results (1)-(2) when W is either a finite or an affine Coxeter group and when (W,L) is either in the split case or in the quasi-split case in [1, Chapters 14-16].
 - (1) $y \leq w$ in W implies $a(w) \leq a(y)$. Hence $y \sim w$ in W implies a(w) = a(y).
- (2) If $w, y \in W$ satisfy a(w) = a(y) and $y \leq w$ (respectively, $y \leq w$, $y \leq w$), then $y \sim w$ (respectively, $y \sim w$, $y \sim w$).
- In [13], Lusztig proved the following results (3)-(4) when W is either a finite or an affine Coxeter group and when (W, L) is in the split case.
- (3) For any $I \subseteq S$, let W_I be the subgroup of W generated by I. If W_I is finite, let w_I be the longest element of W_I , then $a(w_I) = \ell(w_I)$.

- (4) For any nonnegative integer i, let $W_{(i)} = \{w \in W | a(w) = i\}$, then $W_{(i)}$ is either empty or a union of some two-sided cells of W.
 - 1.7 For $w \in W$, we denote by $\Delta(w)$ the nonnegative integer defined by

$$p_{e,w} = n_w v^{-\Delta(w)} + \text{strictly smaller degree terms in } v, \text{ with } n_w \in \mathbb{Z} - \{0\}.$$

Note that
$$\Delta(e) = 0, 0 < \Delta(w) \leqslant L(w)$$
 for $w \neq e$. Let $\mathcal{D} = \{w \in W | a(w) = \Delta(w)\}$.

Lusztig called the elements of \mathcal{D} by distinguished involutions and proved that each left cell of W contains a unique distinguished involution when W is either in the split case or in the quasi-split case.

- **1.8** Let K be a non-empty subset of W. Two elements $x, y \in K$ are called *left-connected* (respectively, right-connected, two-sided-connected) in K, written x - y (respectively, x - y $x_{K_{LR}}y$), if there exists a sequence $x_0=x,x_1,...,x_r=y$ in K with some $r\geqslant 0$ such that $x_{i-1}x_i^{-1} \in S$ (respectively, $x_i^{-1}x_{i-1} \in S$, either $x_{i-1}x_i^{-1} \in S$ or $x_i^{-1}x_{i-1} \in S$) for every $1 \leq i \leq r$. This defines an equivalence relation on K. Each equivalence class of K with respect to $\frac{1}{K_L}$ (respectively, $x_{K_R}y$, $x_{K_LR}y$) is called a left-connected (respectively, right-connected, two-sided-connected) component of K. The set K is called left-connected (respectively, rightconnected, two-sided-connected), if K consists of a single left-connected (respectively, rightconnected, two-sided-connected) component.
- **1.9** Let $s, t \in S$ satisfy o(st) = 3. By a right $\{s, t\}$ -string, we mean a set $\{ys, yst\}$ with $y \in W$ satisfying $\mathcal{R}(y) \cap \{s,t\} = \emptyset$; by a left $\{s,t\}$ -string, we mean a set $\{sy,tsy\}$ with $y \in W$ satisfying $\mathcal{L}(y) \cap \{s, t\} = \emptyset$.

We say that x is obtained from w by a left (respectively, right) $\{s,t\}$ -star operation, if $\{x, w\}$ is a left (respectively, right) $\{s, t\}$ -string. Note that the resulting element x for a left (respectively, right) $\{s,t\}$ -star operation on w is always unique whenever it exists.

Sometimes we call a right $\{s,t\}$ -string and a right $\{s,t\}$ -star operation simply by a right string and a right star operation, respectively. Similarly for the left version of those terms.

We have the following results 1.10-1.12 when (W, L) is in the split case:

Lemma 1.10 (see [14]) Let $s, t \in S$ be with o(st) = 3. Suppose that $\{x_1, x_2\}$ and $\{y_1, y_2\}$ are two right (respectively, left) $\{s,t\}$ -strings. Then

- (a) x_1 — $y_1 \Leftrightarrow x_2$ — y_2 ;
- (b) $x_1 \sim y_1 \Leftrightarrow x_2 \sim y_2$ (respectively, $x_1 \sim y_1 \Leftrightarrow x_2 \sim y_2$). **1.11** We say that $x, y \in W$ form a right primitive pair, if there exist two sequences $x_0 = x, x_1, \dots, x_n$ and $y_0 = y, y_1, \dots, y_n$ in W satisfying:
- (a) For any $1 \le i \le n$, there exist some $s_i, t_i \in S$ with $o(s_i t_i) = 3$ such that both $\{x_{i-1}, x_i\}$ and $\{y_{i-1}, y_i\}$ are right $\{s_i, t_i\}$ -strings.
 - (b) $x_i y_i$ for some (hence all) $i, 0 \le i \le n$.
 - (c) Either $\mathcal{R}(x) \nsubseteq \mathcal{R}(y)$ and $\mathcal{R}(y_n) \nsubseteq \mathcal{R}(x_n)$, or $\mathcal{R}(y) \nsubseteq \mathcal{R}(x)$ and $\mathcal{R}(x_n) \nsubseteq \mathcal{R}(y_n)$.

Note that any right string x, y of W form a right primitive pair with n = 0 in the above definition.

Similarly, we can define a left primitive pair in W.

Lemma 1.12 (see [15]) If x, y is a right (respectively, left) primitive pair, then $x \sim y$ (respectively, $x \sim y$).

2 Some known results on the group \widetilde{D}_4 and \widetilde{B}_3

2.1 Let $\widetilde{S} = \{s_i \mid 0 \leqslant i \leqslant 4\}$ be the generator set of \widetilde{D}_4 with $o(s_is_2) = 3$ and $o(s_is_j) = 2$ for $i \neq j$ in $\{0,1,3,4\}$. Let $\alpha : \widetilde{D}_4 \to \widetilde{D}_4$ be the group automorphism determined by $\alpha(s_i) = s_i$ for $0 \leqslant i \leqslant 2$ and $\alpha(s_j) = s_k$ for $j \neq k$ in $\{3,4\}$. Then the affine Weyl group \widetilde{B}_3 can be realized as the fixed point set of \widetilde{D}_4 under α . Let $S = \{t_i | 0 \leqslant i \leqslant 3\}$ be the Coxeter generator set of \widetilde{B}_3 , where $t_i = s_i$ for $0 \leqslant i \leqslant 2$ and $t_3 = s_3s_4$.

Let $\tilde{\ell}, \ell$ be the length functions on the Coxeter systems $(\tilde{D}_4, \tilde{S}), (\tilde{B}_3, S)$, respectively. By the definition in 1.1, the weighted Coxeter group $(\tilde{D}_4, \tilde{\ell})$ is in the split case, while $(\tilde{B}_3, \tilde{\ell})$ is in the quasi-split case (see [1, Lemma 16.2]).

From now on, we concentrate ourselves to the weighted Coxeter groups $(\widetilde{D}_4, \widetilde{\ell})$ and $(\widetilde{B}_3, \widetilde{\ell})$. We preserve the notation \leq , $\mathcal{L}(w)$, $\mathcal{R}(w)$, a(w), $\Delta(w)$, D for the group $(\widetilde{B}_3, \widetilde{\ell})$, but denote them by $\widetilde{\leq}$, $\widetilde{\mathcal{L}}(w)$, $\widetilde{\mathcal{R}}(w)$, $\widetilde{a}(w)$, $\widetilde{\Delta}(w)$, \widetilde{D} , respectively for the group $(\widetilde{D}_4, \widetilde{\ell})$.

2.2 Since the condition $x \leqslant y$ is equivalent to $x \leqslant y$ for any $x, y \in \widetilde{B}_3$, it will cause no confusion if we use the notation \leqslant in the place of $\widetilde{\leqslant}$. Hence from now on we shall use \leqslant for both \leqslant and $\widetilde{\leqslant}$.

The following fact can be checked easily.

For any $w, y \in \widetilde{B}_3$ and $0 \le i \le 2$, we see that $t_i \in \mathcal{L}(w)$ if and only if $s_i \in \widetilde{\mathcal{L}}(w)$ and that $t_i \in \mathcal{R}(w)$ if and only if $s_i \in \widetilde{\mathcal{R}}(w)$. Also, $t_3 \in \mathcal{L}(w)$ if and only if $s_3 \in \widetilde{\mathcal{L}}(w)$ if and only if $s_4 \in \widetilde{\mathcal{L}}(w)$; $t_3 \in \mathcal{R}(w)$ if and only if $s_3 \in \widetilde{\mathcal{R}}(w)$ if and only if $s_4 \in \widetilde{\mathcal{R}}(w)$.

Lemma 2.3 (see [1, Lemma 16.5]) $a(w) = \widetilde{a}(w)$ for any $w \in \widetilde{B}_3$.

Lemma 2.4 (see [1, Lemma 16.14]) Let $x, y \in \widetilde{B}_3$. Then $x \sim y$ (respectively, $x \sim y$) in \widetilde{B}_3 if and only if $x \sim y$ (respectively, $x \sim y$) in \widetilde{D}_4 .

By Lemma 2.4, we can just use the notation $x \sim y$ (respectively, $x \sim y$) for $x, y \in \widetilde{B}_3$ without indicating whether the relation refers to the group \widetilde{D}_4 or \widetilde{B}_3 .

Let Γ be a left cell of \widetilde{D}_4 . Denote $\Gamma' = \Gamma \cap \widetilde{B}_3$.

Corollary 2.5 If $\Gamma' \neq \emptyset$, then Γ' is a left cell of \widetilde{B}_3 .

Proof It is a direct consequence of Lemma 2.4.

Lemma 2.6 (see [1, Lemma 16.6]) $\mathcal{D} = \widetilde{\mathcal{D}} \cap \widetilde{B}_3$.

Denote the distinguished involution of \widetilde{D}_4 in the left cell Γ by d_{Γ} .

Corollary 2.7 $\Gamma' \neq \emptyset$ if and only if $\alpha(d_{\Gamma}) = d_{\Gamma}$.

 ${f Proof}~~{f By}~{f Corollary}~2.5~{f and}~{f Lemma}~2.6,$ we get the result.

3 The left-connectedness of left cells in \widetilde{D}_4

In the present section, we want to prove the following theorem.

Theorem 3.1 Any left cell of \widetilde{D}_4 is left-connected.

For simplifying the notation, we denote $s_i \in \widetilde{S}$ by the boldfaced letter **i** for any $0 \le i \le 4$.

Following Shi in [10,12], we define, for any left cell Γ and any two-sided cell Ω of the weighted Coxeter group $(\widetilde{D}_4, \widetilde{\ell})$ or $(\widetilde{B}_3, \widetilde{\ell})$, the following sets

$$\begin{split} E(\Gamma) := & \{ w \in \Gamma \mid \widetilde{a}(sw) < \widetilde{a}(w), \forall s \in \widetilde{\mathcal{L}}(w) \}, \\ E_{\min}(\Gamma) := & \{ w \in \Gamma \mid \widetilde{\ell}(w) \leqslant \widetilde{\ell}(x), \forall x \in \Gamma \}, \\ E(\Omega) := & \{ w \in \Omega \mid \widetilde{a}(sw) < \widetilde{a}(w), \forall s \in \widetilde{\mathcal{L}}(w) \}, \\ F(\Omega) := & \{ w \in \Omega \mid \widetilde{a}(sw), \widetilde{a}(wt) < \widetilde{a}(w), \forall s \in \widetilde{\mathcal{L}}(w), t \in \widetilde{\mathcal{R}}(w) \}. \end{split}$$

Recall the relation $\frac{1}{K_L}$ on a non-empty set K of W defined in 1.8. The following result is crucial in proving the left-connectedness of a left cell of \widetilde{D}_4 .

Lemma 3.2 Let Γ be a left cell of \widetilde{D}_4 . If $x_{\Gamma_L} y$ for any $x \neq y$ in $E(\Gamma)$ then Γ is left-connected.

The proof of Lemma 3.2 is the same as that of Lemma 2.3 in [15], hence we omit it here. For any x, y, z in \widetilde{D}_4 , we use the notation $z = x \cdot y$ to indicate z = xy and $\widetilde{\ell}(z) = \widetilde{\ell}(x) + \widetilde{\ell}(y)$. As a consequence of the results in [10, 12, 16], we have

Lemma 3.3 Let w, Γ , Ω be an element, a left cell and a two-sided cell of \widetilde{D}_4 respectively with $\widetilde{a}(w)$, $\widetilde{a}(\Gamma)$, $\widetilde{a}(\Omega) \leq 6$. Then

- (a) w has an expression of the form $w = x \cdot w_J \cdot y$ for some $x, y \in \widetilde{D}_4$ and some $J \subseteq S$ with $\widetilde{\ell}(w_J) = \widetilde{a}(w)$.
- (b) For any $w \in E(\Gamma)$, write $w = w_J \cdot y$ with $J = \widetilde{\mathcal{L}}(w)$ for some $y \in \widetilde{D}_4$. Then $\widetilde{\ell}(w_J) = \widetilde{a}(w)$.
 - (c) If $E(\Gamma) = E_{\min}(\Gamma)$ then Γ is left-connected.
 - (d) $F(\Omega) = \{ w_J \in \Omega \mid J \subseteq S \}.$

Let Ω be a two-sided cell of \widetilde{D}_4 . In [12], Shi designed the following algorithm for finding the set $E(\Omega)$ from $F(\Omega)$.

Algorithm 3.4

(1) Set $Y_0 = F(\Omega)$;

Let $k \ge 0$. Suppose that the set Y_k has been found.

- (2) If $Y_k = \emptyset$, then the algorithm terminates;
- (3) If $Y_k \neq \emptyset$, then find the set $Y_{k+1} = \{xs \mid x \in Y_k, s \in S \setminus \widetilde{\mathcal{R}}(x); xs \in E(\Omega)\}$.

The most technical part in applying Algorithm 3.4 is to determine whether or not an element xs is in the set $E(\Omega)$, that is, to determine if the relations $\tilde{a}(tws) < \tilde{a}(ws) = \tilde{a}(w)$ holds for any $t \in \widetilde{\mathcal{L}}(ws)$. This is easy by using the computer programme MATLAB, since all elements of \widetilde{D}_4 have been described explicitly by Shi in [11].

3.5 Let $i \in \mathbb{N}$. Following [11, Section 3], we see that $W_{(i)} \neq \emptyset$ unless $i \in \{0, 1, 2, 3, 4, 6, 7, 12\}$. $W_{(i)}$ is a single two-sided cell of \widetilde{D}_4 if $i \in \{0, 1, 3, 4, 7, 12\}$. On the other hand, $W_{(i)}$ is a union of three two-sided cells (written $\Omega_{i,1}$, $\Omega_{i,2}$ and $\Omega_{i,3}$) of \widetilde{D}_4 if $i \in \{2, 6\}$, where the two-sided cells Ω_{ij} are determined by the conditions $w_{01} \in \Omega_{2,1}$, $w_{03} \in \Omega_{2,2}$, $w_{04} \in \Omega_{2,3}$, $w_{012} \in \Omega_{6,1}$, $w_{123} \in \Omega_{6,2}$, $w_{124} \in \Omega_{6,3}$, where we denote w_J by w_{ijk} ... for $J = \{s_i, s_j, s_k, \cdots\}$.

Let \mathfrak{S} be the group of all permutations σ on the set $\{0,1,2,3,4\}$ satisfying $\sigma(2)=2$. Let f_{σ} be the automorphism of \widetilde{D}_4 satisfying $f_{\sigma}(s_i)=s_{\sigma(i)}$ for any $s_i\in\widetilde{S}$. We denote $f_{(ij)}$ simply by f_{ij} , where (ij) is the transposition of i and j for $i\neq j$ in $\{0,1,3,4\}$. We get $\Omega_{2,2}=f_{13}(\Omega_{2,1})$, $\Omega_{2,3}=f_{14}(\Omega_{2,1})$, $\Omega_{6,2}=f_{03}(\Omega_{6,1})$, $\Omega_{6,3}=f_{04}(\Omega_{6,1})$ from [11, Section 4].

3.6 For $i \in \mathbb{N}$, let $\widetilde{\Sigma}_i$ be the set of all left cells Γ of \widetilde{D}_4 with $\widetilde{a}(\Gamma) = i$. By Lemma 3.3(d) and the results of Shi in [11], we get

```
F(W_{(1)}) = \{\mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}\}, F(W_{(3)}) = \{w_{\mathbf{02}}, w_{\mathbf{12}}, w_{\mathbf{23}}, w_{\mathbf{24}}, w_{\mathbf{013}}, w_{\mathbf{014}}, w_{\mathbf{034}}, w_{\mathbf{134}}\},
F(W_{(4)}) = \{w_{\mathbf{0134}}\}, F(W_{(12)}) = \{w_{\mathbf{0123}}, w_{\mathbf{0124}}, w_{\mathbf{0234}}, w_{\mathbf{1234}}\},
F(\Omega_{2,1}) = \{w_{\mathbf{01}}, w_{\mathbf{34}}\}, F(\Omega_{2,2}) = f_{13}(F(\Omega_{2,1})), F(\Omega_{2,3}) = f_{14}(F(\Omega_{2,1})),
F(\Omega_{6,1}) = \{w_{\mathbf{012}}, w_{\mathbf{234}}\}, F(\Omega_{6,2}) = f_{03}(F(\Omega_{6,1})), F(\Omega_{6,3}) = f_{04}(F(\Omega_{6,1})).
```

We also have $F(W_{(7)}) = \{i2ki2ij2i \mid i, j, k \in \{0, 1, 3, 4\} \ distinct\}$ by a result of Shi in [12, Section 4.7].

So we can perform Algorithm 3.4 to get $E(\Omega)$ for all two-sided cell Ω of \widetilde{D}_4 with $\widetilde{a}(\Omega) \in \{1, 2, 3, 4, 6, 7, 12\}$ (see Tables 1-7 for the results). Since $E(\Omega_{2,2}) = f_{13}(E(\Omega_{2,1})), E(\Omega_{2,3}) = f_{14}(E(\Omega_{2,1})), E(\Omega_{6,2}) = f_{03}(E(\Omega_{6,1})), E(\Omega_{6,3}) = f_{04}(E(\Omega_{6,1}))$, it allows us not to include $E(\Gamma)$ for any $\Gamma \subset \Omega_{i,k}$, $i \in \{2,6\}$ and k = 2,3 in the list for saving the space.

3.7 In Tables 1-7, if $i \in \{1, 3, 4, 7, 12\}$, then we denote all the left cells in $W_{(i)}$ by $\Gamma_{i,j}$, $1 \leq j \leq \tilde{n}(i)$, where $\tilde{n}(i)$ stands for the number of left cells in $W_{(i)}$; if $i \in \{2, 6\}$, then we denote all the left cells in $\Omega_{i,k}$, k = 1, 2, 3, by $\Gamma_{ik,j}$, $1 \leq j \leq \tilde{n}_k(i)$, where $\tilde{n}_k(2) = 8$ and $\tilde{n}_k(6) = 48$, k = 1, 2, 3. For saving the space in the tables, we denote $\{s_i, s_j, s_k, ...\}$ simply by $\mathbf{i}, \mathbf{j}, \mathbf{k}, \cdots$ concerning the set $\tilde{\mathcal{R}}(\Gamma)$. For example, the set $\{s_1, s_2, s_3, s_5\}$ is denoted by $\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{5}$. However, we only include $E(\Gamma_{7,i})$ and $E(\Gamma_{12,k})$ in Tab. 6 and Tab. 7 respectively, because $E(\Gamma_{7,24+i}) = f_{14}(E(\Gamma_{7,i}))$, $E(\Gamma_{7,48+i}) = f_{34}(E(\Gamma_{7,i}))$, $E(\Gamma_{7,72+i}) = f_{014}(E(\Gamma_{7,i}))$, $E(\Gamma_{12,48+k}) = f_{14}(E(\Gamma_{12,k}))$, $E(\Gamma_{12,96+k}) = f_{04}(E(\Gamma_{12,k}))$, $E(\Gamma_{12,144+k}) = f_{34}(E(\Gamma_{12,k}))$, $1 \leq i \leq 24$, $1 \leq k \leq 48$ (see [11, Section 5]).

We observe from Tables 1–5 that all the elements of $E(\Gamma)$ have the same length for any left cell Γ with $\tilde{a}(\Gamma) \in \{1, 2, 3, 4, 6\}$. So for those left cells Γ , we have $E(\Gamma) = E_{\min}(\Gamma)$ and hence Γ is left-connected by Lemma 3.3 (c). Since $E(\Gamma)$ contains only one element for any left cell Γ in $\widetilde{\Sigma}_{12}$ (see Tab. 7), Γ is left-connected obviously. Thus, to show Theorem 3.1, we need only to deal with all the left cells of \widetilde{D}_4 in $\widetilde{\Sigma}_7$. By Lemma 3.2, we shall prove the left-connectedness of those left cells Γ by showing that x_{Γ} for any $x \neq y$ in $E(\Gamma)$ by a case-by-case argument.

3.8 We proceed our proof by constructing some connected graphs. Those graphs are named by Figures i, i=1,2,3,4, respectively. One connected graph (say Figure i) for each left cell Γ in $\widetilde{\Sigma}_7$, each vertex of Figure i represents an element (say z) of \widetilde{D}_4 which is labeled by $\widetilde{\mathcal{L}}(z)$, all the elements of $E(\Gamma)$ must occur as vertices in the graph Figure i. Two vertices are joined by a solid edge if they form a left string. The connectedness of the graph Figure i implies that all the elements corresponding to the vertices of Figure i belong to Γ by Lemma 1.12, which implies that Γ is left-connected by Lemma 3.2.

Example 3.9 We take Figure 1 as an example to illustrate how we prove the left-connectedness for the left cell $\Gamma := \Gamma_{7,1}$. We have $E(\Gamma) = \{a, b, c\}$ with $a = \Gamma_{7,1}$.

02301240123420124, $b = \mathbf{01230123401230124}$ and $c = \mathbf{12301240123420124}$ by Table 6. The elements a, b, c all occur as vertices of Figure 1 with labels $\boxed{\mathbf{0,2,3}}$, $\boxed{\mathbf{0,1,2}}$, $\boxed{\mathbf{1,2,3}}$, respectively. The vertex labeled by $\boxed{\mathbf{0,1,3}}$ in Figure 1 corresponds to the element $a' := \mathbf{1}a = \mathbf{3}b = \mathbf{0}c$.

By the fact that the vertices labeled by 0.2.3 and 0.1.3 in Fig. 1 are joined by a solid edge, we conclude that $\{a, a'\}$ form a left $\{1, 2\}$ -string. The same argument tells us that $\{b, a'\}$ form a left $\{2, 3\}$ -string and that $\{c, a'\}$ form a left $\{0, 2\}$ -string. This implies by Lemma 1.12 that $a_{\Gamma_L}b_{\Gamma_L}c$ for $\Gamma = \Gamma_{7,1}$. Hence $\Gamma_{7,1}$ is left-connected by Lemma 3.2.

Tab. 2 Description of left cells in $\widetilde{\Sigma}_2$

Γ	$\Gamma_{21,1}$	$\Gamma_{21,2}$	$\Gamma_{21,3}$	$\Gamma_{21,4}$	$\Gamma_{21,5}$	$\Gamma_{21,6}$	$\Gamma_{21,7}$	$\Gamma_{21,8}$
					0123			
$\widetilde{\mathcal{R}}(\Gamma)$	0,1	3,4	2	2	3	4	0	1

Tab. 3 Description of left cells in Σ_3

Γ	Γ_3	,1	$\Gamma_{3,2}$	Γ:	3,3	$\Gamma_{3,4}$	$\Gamma_{3,5}$	$\Gamma_{3,6}$	$\Gamma_{3,7}$		$\Gamma_{3,8}$	$\Gamma_{3,9}$	$\Gamma_{3,10}$
$E(\Gamma)$	0201,	1201	020	0230	,2320	121	$1231,\!2321$	232	2423,23	324 12	241,2421	242	0240,2420
$\widetilde{\mathcal{R}}(\Gamma)$	0,	1	0,2	0	,3	1,2	1,3	2,3	3,4		1,4	2,4	0,4
Γ	Γ3,	11 I	3,12	$\Gamma_{3,13}$	$\Gamma_{3,14}$	$\Gamma_{3,15}$	$\Gamma_{3,16}$	$\Gamma_{3,17}$	$\Gamma_{3,18}$	$\Gamma_{3,19}$	$\Gamma_{3,20}$	$\Gamma_{3,21}$	$\Gamma_{3,22}$
E(1	Γ) 01 :	32 (142	0342	1342	013	01324	014	01423	034	03421	134	13420
$\widetilde{\mathcal{R}}(1)$	Γ) 2		2	2	2	0,1,3	3 4	0,1,4	3	0,3,4	1	1,3,4	0

Tab. 4 Description of left cells in $\widetilde{\Sigma}_4$

Γ	$\Gamma_{4,1}$	$\Gamma_{4,2}$	$\Gamma_{4,3}$	$\Gamma_{4,4}$	$\Gamma_{4,5}$	$\Gamma_{4,6}$	$\Gamma_{4,7}$	$\Gamma_{4,8}$	$\Gamma_{4,9}$	$\Gamma_{4,10}$
$E(\Gamma)$	0134	01342	013420	013421	013423	013424	0134201	0134230	013424	0 0134231
$\widetilde{\mathcal{R}}(\Gamma)$	0,1,3,4	2	0,2	1,2	2,3	2,4	0,1	0,3	$0,\!4$	1,3
Г	$\Gamma_{4,11}$	$\Gamma_{4,}$	12 Г	4,13	$\Gamma_{4,14}$	$\Gamma_{4,15}$	$\Gamma_{4,10}$	6 Γ.	4,17	$\Gamma_{4,18}$
$E(\Gamma)$	013424	1 0134	234 013	42301	01342401	0134234	01342	341 0134	23012 0	13424012
$\widetilde{\mathcal{R}}(\Gamma)$	1,4	3,	4 0	,1,3	0,1,4	0,3,4	1,3,	4	2	2
I	Γ.	4,19	$\Gamma_{4,20}$]	$\Gamma_{4,21}$	$\Gamma_{4,22}$	Γ_{4}	1,23	$\Gamma_{4,24}$	
E(Γ) 013 4	23402				01342401	23 01342	234021 0	13423412	20
$\widetilde{\mathcal{R}}($	Γ)	2	2		4	3		1	0	

Tab. 5 Description of left cells in $\widetilde{\Sigma}_6$

	Γ	$\Gamma_{61,1}$	$\Gamma_{61,2}$	$\Gamma_{61,3}$	$\Gamma_{61,4}$	$\Gamma_{61,5}$	Γ_6	1,6	$\Gamma_{61,7}$	$\Gamma_{61,8}$	$\Gamma_{61,9}$
F	$\mathcal{E}(\Gamma)$	012012	234234	0120123	0120124	234234	40 2342	2341	0123012	3 01201234	01240124
Â	$\tilde{\mathfrak{L}}(\Gamma)$	$0,\!1,\!2$	2,3,4	$0,\!1,\!3$	0,1,4	$0,\!3,\!4$	1,5	3,4	2,3	$0,\!1,\!3,\!4$	2,4
Γ		$\Gamma_{61,10}$	$\Gamma_{61,11}$	Γ_{61}	12 Γε	1,13	$\Gamma_{61,14}$:	$\Gamma_{61,15}$	$\Gamma_{61,16}$	$\Gamma_{61,17}$
E(I	7) 2	23423401	2342340	23423	3412 0123	01234	0120123	342 (012401234	4 23423401	2 234234021
$\widetilde{\mathcal{R}}(I$	7)	0,1,3,4	0,2	1,	2 :	3,4	2		3,4	2	0,1
I		$\Gamma_{61,18}$	Γ_6 :	1,19	$\Gamma_{61,20}$	Γ_6 :	1,21	Γ_{0}	61,22	$\Gamma_{61,23}$	$\Gamma_{61,24}$
E((Γ)	23423412	0 01230	12342 0	12012342	01201	23421	0124	012342 2	2342340120	2342340121
$\widetilde{\mathcal{R}}$	(Γ)	0,1	2	,4	0,2	1	,2	:	2,3	0,2	1,2

			Cor	ntinue of	Tab. 5			
Γ Γ	$\Gamma_{61,25}$ Γ_{61}	,26	$\Gamma_{61,27}$	$\Gamma_{61,28}$		$\Gamma_{61,29}$	$\Gamma_{61,30}$	$\Gamma_{61,31}$
()	340123234234	10124 0123	30123420	0123012	3421 0120	01234201	01240123	420 01240123421
$\widetilde{\mathcal{R}}(\Gamma)$	2,3 2,	4	0,4	1,4		0,1	0,3	1,3
Γ	$\Gamma_{61,32}$	$\Gamma_{61,33}$	Γ_{61}	1,34	$\Gamma_{61,35}$		$\Gamma_{61,36}$	$\Gamma_{61,37}$
$E(\Gamma)$ 23	423401230	2342340124	0 23423	401231 2	234234012	241 234	123401234	012301234201
$\widetilde{\mathcal{R}}(\Gamma)$	0,3	0,4	1	,3	1,4		3,4	0,1,4
Γ	$\Gamma_{61,38}$	$\Gamma_{61,39}$	Γ_6	1,40	$\Gamma_{61,41}$		$\Gamma_{61,42}$	$\Gamma_{61,43}$
(/	401234201 2	342340123	40 234234	4012341 0	12301234	2012 012	240123420	12 2342340123402
$\widetilde{\mathcal{R}}(\Gamma)$	0,1,3	0,3,4	1,	3,4	2		2	2
Γ	$\Gamma_{61,44}$	$\Gamma_{61,4}$	45	Γ_{61}	46	Γ_{61}	,47	$\Gamma_{61,48}$
()	42340123412	01230123	3420123	01240123	420124	2342340	1234021	23423401234120
$\widetilde{\mathcal{R}}(\Gamma)$	2	3		4		1	<u> </u>	0
		Tab.	6 Desc	cription o	of left cel	lls in $\widetilde{\Sigma}_7$		
Γ	$\Gamma_{7,1}$			$\Gamma_{7,2}$		$\Gamma_{7,3}$		$\Gamma_{7,4}$
$E(\Gamma)$ a	=0230124012	3420124	a = 02301	24012342	012 a=0	02301240	1234201	a = 023012012342
b:	=0123012340	1230124	b= 01230 1	123401230	012 b=0	12301234	1012301	$b {=} 012301234012$
	c=1230124012	23420124	c = 12301	24012342	012 c=1	2301240	1234201	$c{=}123012012342$
$\widetilde{\mathcal{R}}(\Gamma)$	4			2		0,1,3		2
Figure	Figure	1	Fi	gure 1		Figure	1	Figure 1
Γ	$\Gamma_{7,5}$	$\Gamma_{7,6}$		$\Gamma_{7,7}$	Γ_7	,-	$\Gamma_{7,9}$	$\Gamma_{7,10}$
` /	02301201234							012 a=0230120124
	01230123401			023020123	b= 0230	201234 h	=1230120	012 b=1230120124
	2301201234	c=1230120	0123					
$\mathcal{R}(\Gamma)$	0,1,3,4	0,1,3	_	1,2,3	1,3		0,1,2	0,1,4
Figure	Figure 1	Figure		Figure 2	Figu		Figure 3	Figure 3
Γ	$\Gamma_{7,11}$		7,12	Γ_7		$\Gamma_{7,1}$		$\Gamma_{7,15}$
$E(\Gamma)$	a=0123012		3012340	a= 0230 ?		a=01230		$a {=} 01230123412$
≃ (-)	b=12312012		31201234	b= 1230			2012342	b= 02302012342
$\widetilde{\mathcal{R}}(\Gamma)$	0,2,3		,3,4	2,		2,		2,4
Figure	Figure 4		gure 4		ıre 3	Figu		Figure 2
Γ	$\Gamma_{7,16}$	$\Gamma_{7,1}$		$\Gamma_{7,1}$		$\Gamma_{7,19}$		$\Gamma_{7,20}$
()	012301234120			a=012301				a=02301240123420
b=(023020123420	b=123012	2401234 b	=123120				=01230123401230
$\widetilde{\mathcal{R}}(\Gamma)$	0.4	0	4	1				=12301240123420
Figure	0,4 Figure 2	3, 4 Figu		1,4		0,2 Figur		0,3 Figure 1
				Figure				
$\frac{\Gamma}{E(\Gamma)}$	Γ _{7,21}		$\Gamma_{7,22}$	0123421	$\Gamma_{7,5}$			7,24
$E(\Gamma)$	a=0230124	340123 b=						201234201
		012342 c=			c=123012			123401201 201234201
$\widetilde{\mathcal{R}}(\Gamma)$	2,3	012342 (-	1,3	1120421	1,			0,1
Figure	Figure	. 1	Figure	1	Figui			gure 1
1 iguic	1 iguit	, 1	1 iguic	1	1 1541		1 18	<u> </u>
-				ription o				
Γ E(Γ) 012 :	$\frac{\Gamma_{12,1}}{301230123}$ 0123	Γ _{12,2} 012301234 0	Γ _{12,3} 12301230123		12,4 230123420	$\Gamma_{12,5}$ 0123012301	23421 0123	$\frac{\Gamma_{12,6}}{01234012342}$
$\widetilde{\mathcal{R}}(\Gamma)$	0,1,2,3	0,1,3,4	2,4	(0,2,4	1,2,4		2,3,4
Γ	$\Gamma_{12,7}$	$\Gamma_{12,8}$		$\Gamma_{12,9}$		2,10	Γ _{12,1}	
E(Γ) 012	3012301234201	012301234012	3420 01230	1234012342	1 01230123	3012342012	0123012340	1234201
$\widetilde{\mathcal{R}}(\Gamma)$	0,1,4	0,3,4		1,3,4		,1,2	0,1,3	,4
$\widetilde{\mathcal{R}}(\Gamma)$ Γ					0		0,1,3	

		Continue o	of Tab. 7	
Γ	$\Gamma_{12,17}$	$\Gamma_{12,18}$	$\Gamma_{12,19}$	$\Gamma_{12,20}$
$E(\Gamma)$	012301234012341201	0123012340123420123 0	123012340123412012	0123012340123402012
$\widetilde{\mathcal{R}}(\Gamma)$	0,1,3	2,3	$0,\!2$	1,2
Γ	$\Gamma_{12,21}$	$\Gamma_{12,22}$	$\Gamma_{12,23}$	$\Gamma_{12,24}$
$E(\Gamma)$	0123012340123420124	01230123401234120123	012301234012340201	23 01230123401234201234
$\widetilde{\mathcal{R}}(\Gamma)$	2,4	0,2,3	1,2,3	3,4
Γ	$\Gamma_{12,25}$	$\Gamma_{12,26}$	$\Gamma_{12,27}$	$\Gamma_{12,28}$
$E(\Gamma)$	0123012340123401201	2 0123012340123412012	4 01230123401234020	124 012301234012340120123
$\widetilde{\mathcal{R}}(\Gamma)$	0,1,2	0,4	1,4	0,1,3
Γ	$\Gamma_{12,29}$	$\Gamma_{12,30}$	$\Gamma_{12,31}$	$\Gamma_{12,32}$
$E(\Gamma)$				012340123401201234
$\widetilde{\mathcal{R}}(\Gamma)$	0,3,4	1,3,4	0,1,4	0,1,3,4
Γ	$\Gamma_{12,33}$	$\Gamma_{12,34}$	$\Gamma_{12,35}$	$\Gamma_{12,36}$
$E(\Gamma)$ $\widetilde{\mathcal{R}}(\Gamma)$	0123012340123412012342			1230123401234012012342
	2,4	2,4	2,4	2
Γ	$\Gamma_{12,37}$	$\Gamma_{12,38}$	$\Gamma_{12,39}$	$\Gamma_{12,40}$
$E(\Gamma)$ $\widetilde{\mathcal{R}}(\Gamma)$	01230123401234120123421		01230123401234012401234	012301234012340120123420
	1,4	0,4	3,4	0,2
Γ	$\Gamma_{12,41}$	$\Gamma_{12,42}$		$\Gamma_{12,43}$
$E(\Gamma)$	0123012340123401201	$23421 \ 012301234012340$	124012342 012301234	0123401201234201
$\widetilde{\mathcal{R}}(\Gamma)$	1,2	2,3		0,1
Γ	$\Gamma_{12,47}$	Ι	12,48	
$E(\Gamma)$	0123012340123401240	12342012 012301234012	3401240123420124	
$\widetilde{\mathcal{R}}(\Gamma)$	2		4	

4 Cells of the weighted Coxeter group $(\widetilde{B}_3, \widetilde{\ell})$

4.1 Recall in 3.6 that we defined the set $\widetilde{\Sigma}_i$ in the group \widetilde{D}_4 for any $i \in \mathbb{N}$. Let Σ_i be the set of all left cells in the weighted Coxeter group $(\widetilde{B}_3, \widetilde{\ell})$ and let $n_i = |\Sigma_i|$. By Corollary 2.5, we have $\Sigma_i = \{\Gamma \cap \widetilde{B}_3 \mid \Gamma \in \widetilde{\Sigma}_i, \Gamma \cap \widetilde{B}_3 \neq \emptyset\}$ for any $i \in \mathbb{N}$.

Let us use some special notation for the left cells of $(\widetilde{B}_3,\widetilde{\ell})$ as follows: For $i \neq 2,6$, denote $\Gamma'_{i,j} := \Gamma_{i,j} \cap \widetilde{B}_3$ for any $\Gamma_{i,j} \in \widetilde{\Sigma}_i$ with $\Gamma_{i,j} \cap \widetilde{B}_3 \neq \emptyset$. On the other hand, for $i \in \{2,6\}$, denote $\Gamma'_{ik,j} := \Gamma_{ik,j} \cap \widetilde{B}_3$ for any $\Gamma_{ik,j} \in \widetilde{\Sigma}_i$ with $\Gamma_{ik,j} \cap \widetilde{B}_3 \neq \emptyset$.

For example, $\Gamma_{4,16} \in \widetilde{\Sigma}_4$ satisfies $\Gamma_{4,16} \cap \widetilde{B}_3 \neq \emptyset$, so $\Gamma'_{4,16} := \Gamma_{4,16} \cap \widetilde{B}_3$ is a left cell of \widetilde{B}_3 . In the subsequent discussion, when we mention a left cell Γ' of \widetilde{B}_3 , we mean $\Gamma' = \Gamma \cap \widetilde{B}_3$ for some left cell Γ of \widetilde{D}_4 .

Theorem 4.2 $(n_0, n_1, n_2, n_3, n_4, n_6, n_7, n_{12}) = (1, 3, 6, 10, 12, 24, 24, 48).$

Proof By the knowledge of the set $\widetilde{\mathcal{D}}$ in [17], we can get the set $\mathcal{D} = \{d \in \widetilde{\mathcal{D}} \mid \alpha(d) = d\}$ (see 2.1 for α) by Lemma 2.6. So we get the numbers n_i by a direct counting in \mathcal{D} and by Lemma 2.3, Corollaries 2.5 and 2.7.

The weighted Coxeter group $(\widetilde{B}_3, \widetilde{\ell})$ contains 128 left cells in total by Theorem 4.2. In the proof of Theorem 4.2, we actually get the following results.

- $\Sigma_0 = \{\Gamma'_{0,1}\}, \text{ where } \Gamma'_{0,1} = \{e\};$
- $\Sigma_1 = \{\Gamma'_{1,1}, \Gamma'_{1,2}, \Gamma'_{1,3}\};$
- $\Sigma_2 = \{\Gamma'_{21,1}, \Gamma'_{21,2}, \Gamma'_{21,3}, \Gamma'_{21,4}, \Gamma'_{21,7}, \Gamma'_{21,8}\};$
- $\Sigma_3 = \{\Gamma'_{2,1}, \Gamma'_{2,2}, \Gamma'_{2,4}, \Gamma'_{2,7}, \Gamma'_{2,13}, \Gamma'_{2,14}, \Gamma'_{2,19}, \Gamma'_{2,20}, \Gamma'_{2,21}, \Gamma'_{2,22}\};$
- $\Sigma_4 = \{\Gamma'_{4.1}, \Gamma'_{4.2}, \Gamma'_{4.3}, \Gamma'_{4.4}, \Gamma'_{4.7}, \Gamma'_{4.12}, \Gamma'_{4.15}, \Gamma'_{4.16}, \Gamma'_{4.19}, \Gamma'_{4.20}, \Gamma'_{4.23}, \Gamma'_{4.24}\};$
- $$\begin{split} \Sigma_6 &= \{\Gamma'_{61,1}, \Gamma'_{61,2}, \Gamma'_{61,5}, \Gamma'_{61,6}, \Gamma'_{61,8}, \Gamma'_{61,10}, \Gamma'_{61,11}, \Gamma'_{61,12}, \Gamma'_{61,14}, \Gamma'_{61,16}, \Gamma'_{61,17}, \Gamma'_{61,18}, \Gamma'_{61,20}, \\ &\quad \Gamma'_{61,21}, \Gamma'_{61,23}, \Gamma'_{61,24}, \Gamma'_{61,29}, \Gamma'_{61,36}, \Gamma'_{61,39}, \Gamma'_{61,40}, \Gamma'_{61,43}, \Gamma'_{61,44}, \Gamma'_{61,47}, \Gamma'_{61,48}\}; \end{split}$$
- $\Sigma_{7} = \{\Gamma'_{7,25}, \Gamma'_{7,26}, \Gamma'_{7,27}, \Gamma'_{7,28}, \Gamma'_{7,29}, \Gamma'_{7,30}, \Gamma'_{7,31}, \Gamma'_{7,32}, \Gamma'_{7,39}, \Gamma'_{7,40}, \Gamma'_{7,43}, \Gamma'_{7,46}, \Gamma'_{7,73}, \Gamma'_{7,74}, \Gamma'_{7,75}, \Gamma'_{7,76}, \Gamma'_{7,77}, \Gamma'_{7,78}, \Gamma'_{7,79}, \Gamma'_{7,80}, \Gamma'_{7,87}, \Gamma'_{7,88}, \Gamma'_{7,91}, \Gamma'_{7,94}\};$
- $$\begin{split} \Sigma_{12} &= \{\Gamma'_{12,49}, \Gamma'_{12,50}, \Gamma'_{12,51}, \Gamma'_{12,52}, \Gamma'_{12,57}, \Gamma'_{12,59}, \Gamma'_{12,61}, \Gamma'_{12,63}, \Gamma'_{12,65}, \Gamma'_{12,67}, \Gamma'_{12,69}, \Gamma'_{12,71}, \Gamma'_{12,74}, \\ &\quad \Gamma'_{12,76}, \Gamma'_{12,78}, \Gamma'_{12,80}, \Gamma'_{12,82}, \Gamma'_{12,84}, \Gamma'_{12,86}, \Gamma'_{12,88}, \Gamma'_{12,93}, \Gamma'_{12,94}, \Gamma'_{12,95}, \Gamma'_{12,96}, \Gamma'_{12,97}, \Gamma'_{12,98}, \\ &\quad \Gamma'_{12,99}, \Gamma'_{12,101}, \Gamma'_{12,104}, \Gamma'_{12,107}, \Gamma'_{12,108}, \Gamma'_{12,111}, \Gamma'_{12,112}, \Gamma'_{12,116}, \Gamma'_{12,117}, \Gamma'_{12,118}, \Gamma'_{12,123}, \\ &\quad \Gamma'_{12,124}, \Gamma'_{12,125}, \Gamma'_{12,128}, \Gamma'_{12,129}, \Gamma'_{12,132}, \Gamma'_{12,133}, \Gamma'_{12,137}, \Gamma'_{12,140}, \Gamma'_{12,142}, \Gamma'_{12,142}, \Gamma'_{12,144} \}. \end{split}$$
- **4.3** Let $\Gamma' = \Gamma \cap \widetilde{B}_3$ be a left cell of $(\widetilde{B}_3, \widetilde{\ell})$ for some left cell Γ of \widetilde{D}_4 . Then the set $E_{\min}(\Gamma')$ can be described as follows.
 - (1) If $\Gamma' \in \Sigma_i$, $i \in \{1, 2, 4, 6, 12\}$, then $E(\Gamma) \subset \widetilde{B}_3$ and $|E(\Gamma)| = 1$. Hence $E_{\min}(\Gamma') = E(\Gamma)$.
 - (2) If $\Gamma' \in \Sigma_3$, then there are three cases:
- (2a) When $\Gamma' = \Gamma'_{3,1}$, we have $E(\Gamma_{3,1}) = \{a, b\} \subset \widetilde{B}_3$ with $a = \mathbf{0201}$, $b = \mathbf{1201}$, where $\mathbf{1} \cdot a = \mathbf{0} \cdot b \in \Gamma'_{3,1}$. Hence $E_{\min}(\Gamma'_{3,1}) = E(\Gamma_{3,1})$.
- (2b) When $\Gamma' = \Gamma'_{3,7}$, we have $E(\Gamma_{3,7}) = \{a,b\} \cap \widetilde{B}_3 = \emptyset$ with $a = \mathbf{2423}, b = \mathbf{2324}$. Then $c := \mathbf{3} \cdot a = \mathbf{4} \cdot b \in \widetilde{B}_3$. Hence $E_{\min}(\Gamma'_{3,7}) = \{c\}$.
 - (2c) When $\Gamma' \notin \{\Gamma'_{3,1}, \Gamma'_{3,7}\}$, we have $E(\Gamma) \subset \widetilde{B}_3$ and $|E(\Gamma)| = 1$. Hence $E_{\min}(\Gamma') = E(\Gamma)$.
 - (3) If $L' \in \Sigma_7$, there are two cases:
 - (3a) $E(\Gamma) = \{a, b\}, E(\Gamma) \cap \widetilde{B}_3 = \emptyset \text{ and } c := \mathbf{3} \cdot a = \mathbf{4} \cdot b \in \Gamma'. \text{ Hence } E_{\min}(\Gamma') = \{c\}.$
- (3b) $E(\Gamma) = \{a, b, c\}, E(\Gamma) \cap \widetilde{B}_3 = \{c\}$ and, either $\mathbf{4} \cdot a = \mathbf{3} \cdot b = \mathbf{1} \cdot c \in \Gamma'$ or $\mathbf{4} \cdot a = \mathbf{3} \cdot b = \mathbf{0} \cdot c \in \Gamma'$. Hence $E_{\min}(\Gamma') = \{c\}$.

We display the sets $E_{\min}(\Gamma')$ for all left cells $\Gamma' \in \bigcup_{i \leq 12} \Sigma_i$ in Tables 8–14.

Tab. 8 Description of left cells in Σ_0

	1			0
Γ'	$\Gamma'_{1,1}$	$\Gamma'_{1,2}$	$\Gamma'_{1,3}$	
$E_{\min}(\Gamma')$	0	1	2	

Tab. 9 Description of left cells in Σ_2

Γ'	$\Gamma'_{21,1}$	$\Gamma'_{21,2}$	$\Gamma'_{21,3}$	$\Gamma'_{21,4}$	$\Gamma'_{21,7}$	$\Gamma'_{21,8}$
$E_{\min}(\Gamma')$	01	34	012	342	3420	3421

Tab. 10 Description of left cells in Σ_3

Γ'	$\Gamma_{3,1}'$	$\Gamma'_{3,2}$	$\Gamma'_{3,4}$	$\Gamma_{3,7}'$	$\Gamma'_{3,13}$	$\Gamma'_{3,14}$	$\Gamma'_{3,19}$	$\Gamma'_{3,20}$	$\Gamma'_{3,21}$	$\Gamma'_{3,22}$	
$E_{\min}(\Gamma')$	0201, 1201	020	121	$3 \cdot a = 4 \cdot b = 4 \cdot 2324$	0342	1342	034	03421	134	13420	

Tab. 11 Description of left cells in Σ_4

Γ'	$\Gamma'_{4,1}$	$\Gamma'_{4,2}$	$\Gamma'_{4,3}$	$\Gamma'_{4,4}$	$\Gamma'_{4,7}$	$\Gamma'_{4,12}$	$\Gamma'_{4,15}$	$\Gamma'_{4,16}$	$\Gamma'_{4,19}$
$E_{\min}(\Gamma')$	0134	01342	013420	013421	0134201	0134234	01342340	01342341	013423402

Γ/	Γ′	Γ′	Γ/	
1	¹ 4,20	1 4,23	¹ 4,24	
E , (Γ')	013/23/12	0134234021	0134234120	
$E_{\min}(\Gamma')$	013423412	0134234021	0134234120	

Tab. 12 Description of left cells in Σ_6

Γ'	$\Gamma'_{61,1}$	$\Gamma'_{61,2}$	$\Gamma'_{61,5}$	$\Gamma'_{61,6}$	$\Gamma'_{61,8}$	$\Gamma'_{61,10}$	$\Gamma'_{61,11}$	$\Gamma'_{61,12}$
$E_{\min}(\Gamma')$	012012	234234	2342340	2342341	01201234	23423401	23423402	23423412
Γ'	$\Gamma'_{61,14}$	Γ'_{ϵ}	31,16	$\Gamma'_{61,17}$	$\Gamma'_{61,18}$	$\Gamma'_{61,20}$	$\Gamma'_{61,2}$	$\Gamma'_{61,23}$
$E_{\min}(\Gamma')$	0120123	42 2342	234012 2	34234021	234234120	01201234	120 012012	3421 2342340120
Γ'	$\Gamma'_{61,24}$	1	$\Gamma'_{61,29}$	$\Gamma'_{61,3}$	36 I	61,39	$\Gamma'_{61,40}$	$\Gamma'_{61,43}$
$\frac{\Gamma'}{E_{\min}(\Gamma')}$	$\Gamma'_{61,24}$ 2342340					- ,	$\Gamma'_{61,40}$ 2342340123	$\frac{\Gamma'_{61,43}}{341}$
		121 012		2342340		- ,		

Tab. 13 Description of left cells in Σ_7

Γ'	$\Gamma'_{7,25}$	$\Gamma'_{7,26}$	$\Gamma_{7,27}'$	$\Gamma'_{7,28}$	$\Gamma'_{7,29}$
$E_{\min}(\Gamma')$	$c\!=\!23423402341234021$	c=2342340234123402	$c\!=\!234234023412340$	c = 234234023412	c=23423402341
г′	$\Gamma'_{7,30}$	$\Gamma'_{7,31}$	$\Gamma'_{7,32}$		$\Gamma'_{7,39}$
$E_{\min}(\Gamma'$) c= 2342340234 3 · a =	$4 \cdot b = 4 \cdot 023024023$	$3 \cdot a = 4 \cdot \mathbf{b} = 4 \cdot 0230$	$0240231 3 \cdot a = 4 \cdot $	$b = 4 \cdot 02302402312$
Γ'	$\Gamma'_{7,40}$	I	7,43	$\Gamma'_{7,46}$	$\Gamma'_{7,73}$
$E_{\min}(\Gamma')$	$3 \cdot a = 4 \cdot b = 4 \cdot 0230$	24023120 c=2342	340234120 c= 234	23402341234 c	=23423412340234120
Γ'	$\Gamma_{7,74}'$	$\Gamma'_{7,75}$	$\Gamma'_{7,76}$	$\Gamma'_{7,77}$	$\Gamma'_{7,78}$
$E_{\min}(\Gamma')$	c=234234123402341	.2 c=23423412340	2341 c=23423412	3402 c= 234234	12340 c=2342341234
Γ'	$\Gamma_{7,79}'$		$\Gamma'_{7,80}$	$\Gamma'_{7,8}$	37
$E_{\min}(\Gamma')$	$3 \cdot a = 4 \cdot b = 4 \cdot 1231$	124123 $3 \cdot a = 4 \cdot b$	$= 4 \cdot 1231241230$	$3 \cdot a = 4 \cdot b = 4 \cdot$	12312412302
Γ'	$\Gamma'_{7,88}$]	$\Gamma'_{7,91}$	$\Gamma'_{7,94}$	
$E_{\min}(\Gamma')$	$3 \cdot a = 4 \cdot b = 4 \cdot 123$	124123021 c=2342	2341234021 c=234	123412340234	

Tab. 14 Description of left cells in Σ_{12}

Γ'	$\Gamma'_{12,49}$	$\Gamma'_{12,50}$	$\Gamma'_{12,51}$	Γ'_{12}	52	$\Gamma'_{12,57}$	
$E_{\min}(\Gamma')$	023402340234	02340234023	41 02340234023	3412 02340234		0234023402341234	
Γ'	$\Gamma'_{12,59}$]	$\Gamma'_{12,61}$	$\Gamma'_{12,63}$		$\Gamma'_{12,65}$	
$E_{\min}(\Gamma')$	0234023402341	12340 023402	34012341234 02	340234023412	3402 023 ₄	402340123412340	
Γ'	$\Gamma'_{12,67}$		$\Gamma'_{12,69}$	Γ'_{12}	71	$\Gamma'_{12,74}$,
$E_{\min}(\Gamma')$	0234023401234	1123402 02340	02340234123402	1 02340234023		34 02340234012341	1234021
Γ'	$\Gamma'_{12,76}$		$\Gamma'_{12,78}$		$\Gamma'_{12,80}$		
$E_{\min}(\Gamma')$	0234023401234	112340234 023	34023402341234	02341 0234023	340123412		
Γ'	$\Gamma'_{12,83}$	2	$\Gamma'_{12,84}$		Γ'_{12}	,86	
$E_{\min}(\Gamma')$	0234023402341	1234023412 02	23402340123412	34023412 0234	02340234	12340234120	
Γ'	Γ'_{12}		$\Gamma'_{12,3}$			$\Gamma'_{12,94}$	
$E_{\min}(\Gamma')$	0234023401234	112340234120	0234023401234		02340234	0123412340234123	40
Γ'		12,95		$\Gamma'_{12,96}$		$\Gamma'_{12,97}$	
$E_{\min}(\Gamma')$	0234023401234	1123402341234	02 02340234013	2341234023412	34021 12	3412341234	
Γ'	$\Gamma'_{12,98}$	$\Gamma'_{12,99}$	$\Gamma'_{12,10}$		$\Gamma'_{12,104}$	$\Gamma'_{12,107}$	
$\frac{\Gamma'}{E_{\min}(\Gamma')}$	1234123412340	1234123412	3402 123412341	234021 12341		234 123412341234	02341
$\frac{\Gamma'}{E_{\min}(\Gamma')}$	$\Gamma'_{12,108}$	1234123412	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	23412340	$\frac{\textbf{234} \textbf{123412341234}}{\Gamma'_{12,116}}$	
Γ' $E_{\min}(\Gamma')$ Γ' $E_{\min}(\Gamma')$	$\Gamma'_{12,108}$ 1234123401234	1234123412	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c cccc} \textbf{234021} & \textbf{12341} \\ & \Gamma'_{12,112} \\ \textbf{2341234012340} \end{array}$	23412340 02341 12	$\Gamma'_{12,107}$ 234 123412341234 $\Gamma'_{12,116}$ 34123401234023412	
$\frac{\Gamma'}{E_{\min}(\Gamma')}$ $\frac{\Gamma'}{\Gamma'}$ $\frac{E_{\min}(\Gamma')}{\Gamma'}$	$\Gamma'_{12,108}$ 123412340 $\Gamma'_{12,108}$ 1234123401234 $\Gamma'_{12,117}$	12341234123 10234 1234123	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	23412340 2341 12:	$\Gamma'_{12,116}$ 34123401234023412	
Γ' $E_{\min}(\Gamma')$ Γ' $E_{\min}(\Gamma')$ Γ' $E_{\min}(\Gamma')$	$\begin{array}{c} \textbf{1234123412340} \\ \Gamma'_{12,108} \\ \textbf{1234123401234} \\ \Gamma'_{12,117} \\ \textbf{12341234123412340} \end{array}$	0 1234123412 10234 123412 0234120 1234	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	23412340 22341 123 ,123 23402341	$\Gamma'_{12,116}$ 34123401234023412	
Γ' $E_{\min}(\Gamma')$ Γ' $E_{\min}(\Gamma')$ Γ' $E_{\min}(\Gamma')$ Γ'	$\begin{array}{c} \textbf{1234123412340} \\ & \Gamma'_{12,108} \\ \textbf{1234123401234} \\ & \Gamma'_{12,117} \\ \textbf{1234123412340} \\ & \Gamma'_{12,124} \end{array}$	0 12341234123 10234 1234123 0234120 1234	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c cccc} \textbf{234021} & \textbf{12341} \\ \hline & \Gamma'_{12,112} \\ \textbf{2341234012340} \\ \hline & \Gamma'_{12} \\ \textbf{34} & \textbf{1234123401} \\ \end{array}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \textbf{234} \textbf{123412341234} \\ \hline \Gamma'_{12,116} \\ \textbf{34123401234023412} \\ \textbf{20} \end{array}$	
$\frac{\Gamma'}{E_{\min}(\Gamma')}$ $\frac{E_{\min}(\Gamma')}{\Gamma'}$ $\frac{\Gamma'}{E_{\min}(\Gamma')}$ $\frac{\Gamma'}{\Gamma'}$ $E_{\min}(\Gamma')$	$\begin{array}{c} \textbf{1234123412340} \\ & \Gamma'_{12,108} \\ \textbf{1234123401234} \\ & \Gamma'_{12,117} \\ \textbf{12341234123402} \\ & \Gamma'_{12,12} \\ \textbf{1234123401234} \end{array}$	0 12341234123 40234 1234123 0234120 1234 4 402341234 123	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c cccc} \textbf{234021} & \textbf{12341} \\ \hline & \Gamma'_{12,112} \\ \textbf{2341234012340} \\ \hline & \Gamma'_{12} \\ \textbf{34} & \textbf{1234123401} \\ \end{array}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \textbf{234} \textbf{123412341234} \\ \hline \Gamma_{12,116}' \\ \textbf{34123401234023412} \\ \textbf{20} \\ \textbf{23412340} \end{array}$	
Γ' $E_{\min}(\Gamma')$ Γ' $E_{\min}(\Gamma')$ Γ' $E_{\min}(\Gamma')$ Γ' Γ' Γ'	$\begin{array}{c} \textbf{1234123412340} \\ & \Gamma'_{12,108} \\ \textbf{1234123401234} \\ & \Gamma'_{12,117} \\ \textbf{1234123412340} \\ & \Gamma'_{12,12} \\ \textbf{1234123401234} \\ & \Gamma'_{12,12} \end{array}$	0 1234123412: 40234 123412: 0234120 1234: 4 402341234 12:	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c cccc} \textbf{234021} & \textbf{12341} \\ & \Gamma'_{12,112} \\ \textbf{2341234012340} \\ & \Gamma'_{12} \\ \textbf{34} & \textbf{1234123401} \\ \\ \textbf{12340} & \textbf{1234123} \\ \end{array}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \textbf{234} \textbf{123412341234} \\ \Gamma'_{12.116} \\ \textbf{34123401234023412} \\ \textbf{20} \\ \textbf{23412340} \\ \\ \textbf{133} \\ \end{array}$	
$\frac{\Gamma'}{E_{\min}(\Gamma')}$ $\frac{E_{\min}(\Gamma')}{\Gamma'}$ $\frac{E_{\min}(\Gamma')}{\Gamma'}$ $\frac{\Gamma'}{\Gamma'}$ $\frac{E_{\min}(\Gamma')}{\Gamma'}$ $\frac{\Gamma'}{E_{\min}(\Gamma')}$	$\begin{array}{c} \textbf{1234123412340} \\ & \Gamma'_{12,108} \\ \textbf{1234123401234} \\ & \Gamma'_{12,117} \\ \textbf{1234123412340} \\ & \Gamma'_{12,12} \\ \textbf{1234123401234} \\ & \Gamma'_{12,12} \\ \textbf{12341234123412340} \end{array}$	0 12341234123 40234 1234123 0234120 123413 4 402341234 123 99 0234123402 13	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$\Gamma'_{12,116}$ 34123402341234 20 23412340 23412340	
$\frac{\Gamma'}{E_{\min}(\Gamma')}$ $\frac{E_{\min}(\Gamma')}{\Gamma'}$ $\frac{E_{\min}(\Gamma')}{\Gamma'}$ $\frac{\Gamma'}{E_{\min}(\Gamma')}$ $\frac{\Gamma'}{\Gamma'}$ $\frac{E_{\min}(\Gamma')}{\Gamma'}$	$\begin{array}{c} \textbf{1234123412340} \\ & \Gamma'_{12,108} \\ \textbf{1234123401234} \\ & \Gamma'_{12,117} \\ \textbf{1234123412340} \\ & \Gamma'_{12,12} \\ \textbf{1234123401234} \\ & \Gamma'_{12,12} \\ \textbf{1234123412340} \\ & \Gamma'_{12,12} \end{array}$	0 12341234123 40234 1234123 0234120 12341 4 402341234 123 199 10234123402 123 137	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$egin{array}{c ccccc} 234021 & 12341 \\ \hline & \Gamma'_{12,112} \\ 2341234012340 \\ \hline & \Gamma'_{12} \\ 34 & 1234123401 \\ \hline & 12340 & 1234123 \\ \hline & 34123402 & 1234 \\ \hline & 140 & 1234123 \\ \hline & 140 & 1204123 \\ \hline & 140 & 12041$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$\Gamma'_{12,116}$ 34123402341234 20 23412340 23412340 23412340 23412340 23412340 2341234021 3341234021	2
$ \begin{array}{c} \Gamma' \\ E_{\min}(\Gamma') \\ \hline \Gamma' \\ \hline E_{\min}(\Gamma') \\ \hline \end{array} $	$\begin{array}{c} \textbf{1234123412340} \\ & \Gamma'_{12,108} \\ \textbf{1234123401234} \\ & \Gamma'_{12,117} \\ \textbf{1234123401234} \\ & \Gamma'_{12,12} \\ \textbf{1234123401234} \\ & \Gamma'_{12,12} \\ \textbf{12341234123401234} \end{array}$	0 12341234123 40234 1234123 0234120 12343 4102341234 123 90 0234123402 13 137 402341234021	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c cccc} \textbf{234021} & \textbf{12341} \\ & \Gamma'_{12,112} \\ \textbf{2341234012340} \\ \textbf{34} & \textbf{1234123403} \\ \textbf{12340} & \textbf{1234123} \\ \textbf{34123402} & \textbf{1234} \\ \textbf{40} \\ \textbf{023412340234} \end{array}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$\Gamma'_{12,116}$ 34123402341234 20 23412340 23412340	2
$\frac{\Gamma'}{E_{\min}(\Gamma')}$ $\frac{E_{\min}(\Gamma')}{\Gamma'}$ $\frac{E_{\min}(\Gamma')}{\Gamma'}$ $\frac{\Gamma'}{E_{\min}(\Gamma')}$ $\frac{\Gamma'}{\Gamma'}$ $\frac{E_{\min}(\Gamma')}{\Gamma'}$	$\begin{array}{c} \textbf{1234123412340} \\ & \Gamma'_{12,108} \\ \textbf{1234123401234} \\ & \Gamma'_{12,117} \\ \textbf{1234123401234} \\ & \Gamma'_{12,12} \\ \textbf{1234123401234} \\ & \Gamma'_{12,12} \\ \textbf{1234123412340} \\ & \Gamma'_{12,1} \\ \textbf{1234123401234} \\ & \Gamma'_{12} \\ \end{array}$	0 12341234123 10234 1234123 10234120 12342 102341234 123 10234123402 123 102341234021 102341234021 102341234021	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$\Gamma'_{12,116}$ 34123402341234 20 23412340 23412340 23412340 23412340 23412340 2341234021 3341234021	2

Lemma 4.4 Let Γ' be a left cell of \widetilde{B}_3 and let $w \in \Gamma'$. Then $w = w_1 \cdot w_0$ for some $w_0 \in E_{\min}(\Gamma')$ and $w_1 \in B_3$.

Proof By Tables 8-14, there are three possible cases:

- (1) $E_{\min}(\Gamma') = E(\Gamma)$. By the definition of $E(\Gamma)$, we can write $w = w_1 \cdot w_0$ for some $w_0 \in E_{\min}(\Gamma')$ and $w_1 \in D_4$. In this case, we have $w_1 = ww_0^{-1} \in B_3$.
- (2) $G(L') = \{c\}$ with $c := \mathbf{3} \cdot a = \mathbf{4} \cdot b$ and $E(\Gamma) = \{a, b\}$ for some $a, b \in \widetilde{D}_4 \widetilde{B}_3$. It is evident that $\{3,4\} \subseteq \widetilde{\mathcal{L}}(3 \cdot a), 4 \in \widetilde{\mathcal{L}}(a) \text{ and } 3 \in \widetilde{\mathcal{L}}(b).$ Let y = 4a. Then $a = 4 \cdot y$ and $b = 3 \cdot y$. Since $\mathbf{3} \cdot a = \mathbf{34} \cdot y \in \widetilde{B}_3$, we have $y \in \widetilde{B}_3$. Hence for any $w \in \Gamma'$, we have $w \in \{w_2 \cdot \mathbf{4} \cdot y, w_3 \cdot \mathbf{3} \cdot y\}$ with some $w_2, w_3 \in \widetilde{D}_4$ by the definition of $E(\Gamma)$. Denote $x = wy^{-1}$, then $x \in \{w_2 \cdot \mathbf{4}, w_3 \cdot \mathbf{3}\}$. If $x = w_2 \cdot \mathbf{4}$ then $\mathbf{4} \in \widetilde{\mathcal{R}}(x)$. Since $x \in \widetilde{B}_3$, we get $\{\mathbf{3},\mathbf{4}\} \subseteq \widetilde{\mathcal{R}}(x)$. So $x = x' \cdot \mathbf{34}$ for some $x' \in B_3$, then $w = x' \cdot 43 \cdot y = x' \cdot 3 \cdot a$. By a similar argument, we see that if $x = w_3 \cdot 3$, then there is some $x'' \in \widetilde{B}_3$ with $w = x'' \cdot \mathbf{43} \cdot y = x'' \cdot \mathbf{3} \cdot a$.
- (3) $E_{\min}(\Gamma') = \{c\}$ with $E(\Gamma) = \{a, b, c\}$ and either $\mathbf{4} \cdot a = \mathbf{3} \cdot b = \mathbf{0} \cdot c$ or $\mathbf{4} \cdot a = \mathbf{3} \cdot b = \mathbf{1} \cdot c$. Assume $\mathbf{4} \cdot a = \mathbf{3} \cdot b = \mathbf{0} \cdot c$ (The case $\mathbf{4} \cdot a = \mathbf{3} \cdot b = \mathbf{1} \cdot c$ can be dealt with similarly). Then $\{\mathbf{0},\mathbf{3},\mathbf{4}\}\subseteq\widetilde{\mathcal{L}}(\mathbf{4}\cdot a), \text{ so } \{\mathbf{0},\mathbf{3}\}\subseteq\widetilde{\mathcal{L}}(a), \{\mathbf{0},\mathbf{4}\}\subseteq\widetilde{\mathcal{L}}(b) \text{ and } \{\mathbf{3},\mathbf{4}\}\subseteq\widetilde{\mathcal{L}}(c). \text{ Denote } y:=03a \text{ (hence } a)$ y = 04b = 34c). Then $a = \mathbf{03} \cdot y$, $b = \mathbf{04} \cdot y$ and $c = \mathbf{34} \cdot y$. Since $c = \mathbf{34} \cdot y \in \widetilde{B}_3$, we get $y \in \widetilde{B}_3$. By the definition of $E(\Gamma)$, we have $w \in \{w_2 \cdot \mathbf{03} \cdot y, w_3 \cdot \mathbf{04} \cdot y, w_4 \cdot c\}$ for some $w_2, w_3, w_4 \in \widetilde{D}_4$. If $w = w_4 \cdot c$, then our result is proved. If $w \in \{w_2 \cdot \mathbf{03} \cdot y, w_3 \cdot \mathbf{04} \cdot y\}$, let $x = wy^{-1}$, then $x \in \{w_2 \cdot \mathbf{03}, w_3 \cdot \mathbf{04}\}$. First assume $x = w_2 \cdot \mathbf{03}$. Then $\{\mathbf{0}, \mathbf{3}\} \subseteq \widetilde{\mathcal{R}}(x)$. Since $x \in \widetilde{B}_3$, we have $\{\mathbf{0},\mathbf{3},\mathbf{4}\}\subseteq\widetilde{\mathcal{R}}(x)$. So $x=x'\cdot\mathbf{034}$ for some $x'\in\widetilde{B}_3$. Thus $w=x'\cdot\mathbf{034}\cdot y=x'\cdot\mathbf{0}\cdot c$. Similarly, when $x = w_3 \cdot \mathbf{04}$, we can find some $x'' \in B_3$ such that $w = x'' \cdot \mathbf{034} \cdot y = x'' \cdot \mathbf{0} \cdot c$, too.

Therefore, the lemma is proved.

Theorem 4.5 Any left cell of (B_3, ℓ) is left-connected.

Proof Recall that $S = \{t_i | 0 \le i \le 3\}$ is the Coxeter generator set of B_3 . Let Γ' be a left cell of \widetilde{B}_3 with $\Gamma' \neq \Gamma'_{3,1}$. By Tables 8-14, we have $|E_{\min}(\Gamma')| = 1$. Any $w \in \Gamma'$ can be written in the form $w = w_1 \cdot w_0$ with some $w_0 \in E_{\min}(\Gamma')$ and $w_1 \in \widetilde{B}_3$ by Lemma 4.4. Let $w_1 = t'_0 t'_1 t'_2 \cdots t'_r$ be a reduced expression of w_1 with $t'_i \in S$ and $x_i = t'_i t'_{i+1} \cdots t'_r w_0$ for $0 \le i \le r$. Then $x_0 = w, x_1, \dots, x_r, x_{r+1} = w_0$ is a sequence of elements in Γ' by 1.6(1)(2). We get $w_{\Gamma_{t}}w_{0}$. Hence Γ' is left-connected.

The left cell $\Gamma' = \Gamma'_{3,1}$ satisfies $E_{\min}(\Gamma') = \{a,b\}$ with $a = \mathbf{0201}$ and $b = \mathbf{1201}$. By 4.3(2a), we get $a_{\Gamma'}b$. For any $x,y\in\Gamma'$, write $x=x'\cdot x''$ and $y=y'\cdot y''$ for some $x',y'\in\widetilde{B}_3$ and some $x'', y'' \in E_{\min}(\Gamma')$. We have $x_{\Gamma'_{r}} x''$ and $y_{\Gamma'_{r}} y''$ by the argument similar to that in the above paragraph. Since $x'' \frac{1}{\Gamma_L'} y''$, we have $x \frac{1}{\Gamma_L'} y$. Therefore $\Gamma_{3,1}'$ is left-connected.

Let
$$I = \{0, 1, 2, 3, 4, 6, 7, 12\}$$
. For $i \in I$, denote $\mathfrak{g}_i = \bigcup_{\Gamma' \in \Sigma_i} E_{\min}(\Gamma')$, $\sigma_i = \bigcup_{\Gamma' \in \Sigma_i} \Gamma'$.
Lemma 4.6 We have $x \underset{L_R}{\sim} y$ and $x \underset{\sigma_{iL_R}}{\longrightarrow} y$ for any $x, y \in \mathfrak{g}_i$ with $i \in I$.

Proof We claim that each \mathfrak{g}_i , $i \in I$, is contained in a two-sided cell of B_3 and in a two-sided-connected component of σ_i .

Since $\mathfrak{g}_0 = \{e\}$, the claim in this case is obviously true.

By Tab. 8, we get $\mathfrak{g}_1 = \{0,1,2\}$. Since $\mathbf{0} \sim \mathbf{02} \sim \mathbf{021} \sim \mathbf{21} \sim \mathbf{1}$ and $\mathbf{02} \sim \mathbf{2}$, we have $\mathbf{0} \underset{LR}{\sim} \mathbf{2} \underset{LR}{\sim} \mathbf{1} \text{ and } \mathbf{0} \underset{\sigma_{\mathbf{1}_{LR}}}{\longrightarrow} \mathbf{2} \underset{\sigma_{\mathbf{1}_{LR}}}{\longrightarrow} \mathbf{1}.$

By Tab. 9, we get $\mathfrak{g}_2 = \{01, 34, 012, 342, 3420, 3421\}$. It is obvious that $01 \sim 012$ and $34 \sim 342 \sim 3420$ and $342 \sim 3421$. We have $01 \sim 34$ since $01 \sim 012 \sim 01234 \sim 1234 \sim 234 \sim 34$ (see [11]). The claim is true for the set \mathfrak{g}_2 .

We display all the elements of the sets \mathfrak{g}_3 , \mathfrak{g}_4 , \mathfrak{g}_6 , \mathfrak{g}_7 , \mathfrak{g}_{12} in Tab. 10, Tab. 11, Tab. 12, Tab. 13, Tab. 14, respectively. To save the space, here we shall not reproduce all the elements of \mathfrak{g}_i for i = 3, 4, 6, 7, 12.

For \mathfrak{g}_3 (see Tab. 10), we have $\mathbf{134} \sim \mathbf{2134} \sim \mathbf{12134} \sim \mathbf{121}$ and $\mathbf{034} \sim \mathbf{2034} \sim \mathbf{02034} \sim \mathbf{020}$ and $\mathbf{134} \sim \mathbf{2134} \sim \mathbf{342134} \sim \mathbf{34234}$ and $\mathbf{121} \sim \mathbf{1210} \sim \mathbf{01210} \sim \mathbf{0201} \sim \mathbf{0201} \sim \mathbf{020}$ and $\mathbf{134} \sim \mathbf{13420} \sim \mathbf{13420}$ and $\mathbf{034} \sim \mathbf{0342} \sim \mathbf{03421}$. So the claim is true for \mathfrak{g}_3 .

Observe Tab. 11. All the elements of \mathfrak{g}_4 are in the same right-connected component of σ_4 and hence they are in the same right cell of \widetilde{B}_3 . The claim is proved for \mathfrak{g}_4 .

From Tab. 12, we see that \mathfrak{g}_6 consists of two kinds of elements: the first kind of elements are of the form $\mathbf{012012} \cdot z$, $z \in \widetilde{B}_3$ which are in the same right cell of \widetilde{B}_3 and also in the same right-connected component of σ_6 ; the second kind of elements are the form $\mathbf{234234} \cdot z'$, $z' \in \widetilde{B}_3$ all of which are in another right cell of \widetilde{B}_3 and also in the same right-connected component of σ_6 . Since $\mathbf{012012} \simeq \mathbf{34012012} \simeq \mathbf{234012012} \simeq \mathbf{1234012012} \simeq \mathbf{01234012012} \simeq \mathbf{201234012012} \simeq \mathbf{201234012012} \simeq \mathbf{20123401201234234} \simeq \mathbf{20123401201234234} \simeq \mathbf{20123401201234234} \simeq \mathbf{20123401201234234} \simeq \mathbf{23401201234234} \simeq \mathbf{23401201234234} \simeq \mathbf{23401201234234} \simeq \mathbf{23401201234234} \simeq \mathbf{234234} \simeq \mathbf{234234}$

By Tab. 13, we see that the elements in \mathfrak{g}_7 can be put into four classes according to their reduced expressions: $2342340234 \cdot z_1$, $2342341234 \cdot z_2$, $0342340234 \cdot z_3$, $1342341234 \cdot z_4$, $z_i \in B_3$ for j = 1, 2, 3, 4. It is evident that the members of the same class are in the same right cell of B_3 and also in the same right-connected component of σ_6 . Besides, we $12342341234 = 13423412341 \sim 1342341234, 1342341234 \sim 13423412340$ $134234123402 \ \, \sim \ \, 13423412340212 \ \, \sim \ \, 13423412340212 \ \, \sim \ \, 13\tilde{4}2341234021234$ ${\sim \atop R}$ 134234123402123420 13423412340212342 $13\overline{4}2341234021234201$ 1234210342340234120 234210342340234120 \sim 34210342340234120 $210342340234120 \ \ \, \underset{L}{\sim} \ \ \, 10\overset{L}{3}42340234120 \ \ \, \underset{L}{\sim} \ \ \, 03423402\overset{L}{3}4120 \ \ \, \underset{R}{\sim} \ \ \, 034234023412$ 03423402341 $\sim R$ 0342340234, hence \mathfrak{g}_7 is contained in some two-sided cell of \widetilde{B}_3 and also in some two-sided-connected component of σ_7 .

see that \mathfrak{g}_{12} is contained in some two-sided cell of \widetilde{B}_3 and in some two-sided-connected component of σ_{12} .

The proof is completed.

Theorem 4.7 For $i \in I$, the set σ_i forms a single two-sided cell of $(\widetilde{B}_3, \widetilde{\ell})$. Furthermore, σ_i is two-sided-connected.

Proof By 1.6(1), we see that for any $i \in I$, the set σ_i is a union of some two-sided cells of $(\widetilde{B}_3, \widetilde{\ell})$. Then Lemma 4.6 tells us that $x \xrightarrow{\sigma_{iLR}} y$ for any $x, y \in \mathfrak{g}_i$. Since each left cell of $(\widetilde{B}_3, \widetilde{\ell})$ is proved to be left-connected and contains an element of \mathfrak{g}_i , this implies that σ_i is two-sided-connected. Hence σ_i is a single two-sided cell of \widetilde{B}_3 by Lemma 4.6.

By Theorem 4.7, Lemma 2.3 and 3.5, we see that there are totally eight two-sided cells in $(\widetilde{B}_3, \widetilde{\ell})$.

[References]

- 1 LUSZTIG G. Hecke Algebras with Unequal Parameters[M]. CRM Monograph Series 18. Providence: AMS, 2003.
- [2] LUSZTIG G. Left Cells in Weyl Groups[M]. Lie Group Representation I. Lecture Notes in Math 1024. Berlin: Springer-Verlag, 1984: 99-111.
- [3] BREMKE K. On generalized cells in affine Weyl groups[J]. J Algebra, 1997, 191: 149-173.
- [4] GUILHOT J. Kazhdan-Lusztig cells in the affine Weyl groups of rank 2[J]. International Mathematics Research Notices, 2010, 17: 3422-3462.
- [5] SHI J Y. The cells of the affine Weyl group \widetilde{C}_n in a certain quasi-split case[EB/OL]. Preprint. [2012-12-29]. http://math.ecnu.edu.cn/~jyshi/myart/quasisplit1.pdf.
- [6] ASAI T, KAWANAKA N, SPALTENSTEIN, et al. Open problems in algebraic groups[C]// Problems from the conference on algebraic groups and representations held at Katata: Taniguchi Foundation, 1983.
- [7] SHI J Y. The Kazhdan-Lusztig cells in certain affine Weyl groups[M]. Lecture Notes in Math 1179. Berlin: Springer-Verlag, 1986.
- 8 SHI J Y. A two-sided cell in an affine Weyl group, II[J]. J London Math Soc, 1988, 37(2): 253-264.
- [9] SHI J Y. Left cells containing a fully commutative element[J]. J Comb Theory (Series A), 2006, 113: 556-565.
- [10] SHI J Y. Left-connectedness of some left cells in certain Coxeter groups of simply-laced type[J]. J Algebra, 2008, 319 (6): 2410-2413.
- [11] SHI J Y. Left cells of the affine Weyl group $W_a(\widetilde{D}_4)$ [J]. Osaka J Math, 1994, 31(1): 27-50.
- [12] SHI J Y. A new algorithm for finding an l.c.r set in certain two-sided cells[J]. Pacific J Math, 2012, 256(1): 235-252
- [13] LUSSZTING G. Cells in affine Weyl group[C]// Algebraic groups and related topics. Advanced Studies in Pure Math, 1985, 6: 255-287.
- [14] SHI J Y. Left cells in affine Weyl groups[J]. Töhoku J Math, 1994, 46: 105-124.
- [15] MI Q Q, SHI J Y. Left-connectedness of left cells in the Weyl group of type $E_6[J]$. Journal of East China Normal University (Natural Science), 2013, 1: 76-90.
- [16] KAZHDAN D, LUSZTIG G. Representation of Coxeter groups and Hecke algebras[J]. Invent Math, 1979, 53: 165-184.
- [17] ZHANG Y G. The distinguished involutions of the affine Weyl group of type \widetilde{B}_4 , \widetilde{C}_4 , \widetilde{D}_4 and $\widetilde{F}_4[D]$. Master Dissertation. Shanghai: East China Normal University, 2011.

(责任编辑 王善平)