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Cells of the weighted Coxeter group (ég, Z)
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Abstract: The affine Coxeter group (Eg7 S) can be realized as the fixed point set of the
affine Coxeter group (547 §) under a certain group automorphism « with oe(g) = S. Let
? be the length function of Dsy. We gave an explicit description for all the left cells of the
weighted Coxeter group (5372). Also, we showed that in the the weighted Coxeter groups
(D4, 0) and (Bs, 0), each left (respectively, two-sided) cell was left-connected (respectively,
two-sided-connected).
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0 Introduction

In his book [1], Lusztig introduced a weighted Coxeter group (W, L), which is, by definition,
a Coxeter system (W, S) together with a weight function L : W — Z. He proposed a bundle
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of conjectures, intending to generalize many results on cells of W in the equal parameter case
to the unequal parameters case. The most successful part for such a generalization is when
(W, L) is in a certain quasi-split case, that is, W can be realized as the fixed point set of a finite
or an affine Coxeter system (W, §) under a certain group automorphism a with a(§) = §,
and the weight function L is the restriction to W of the length function ¢ of W (see [2-5]).
Lusztig conjectured in [6] that any left cell of an affine Weyl group is left-connected in the split
case. The left-connectedness is a good structural property for a left cell. We now extend this
conjecture to any weighted Coxeter group by proposing the following conjecture:

Conjecture A The left (respectively, two-sided) cells of any weighted Cozeter group are
left-connected (respectively, two-sided-connected).

Though it has been verified in many split cases (see [7-10]), as well as in certain quasi-split
cases (see [5]) by Shi, Conjecture A still remains open up to now.

In the present paper, we consider the affine Coxeter group W = Eg in the quasi-split case
where W is realized as the fixed point set of the affine Coxeter group W= l~)4 under the group
automorphism « determined by «(s;) = s;, 0 <4 < 2 and a(s;) = s for j # k in {3, 4}, where
the Coxeter generator set S = {s; | 0 < i < 4} of Dy satisfies o(s;s2) = 3 and o(s;s5) = 2 for
1 # jin {0,1,3,4}.

Shi described the left cells of Dy in [11]. Later he designed some algorithms and provided
some criteria in his study of left-connectedness of left cells in [10,12]. Based on these results, we
shall give a description for all the left cells of the weighted Coxeter group (Eg, Z) and prove that
all the left (respectively, two-sided) cells of the weighted Coxeter groups (Ds, Z) and (Bs, €~) are
left-connected (respectively, two-sided-connected), where (s the length function of the Coxeter
system (D, S).

The contents of the paper are organized as follows. Section 1 is served as preliminaries,
where we collect some concepts, terms and known results. Then we introduce some known
results on the groups l~)4 and £~33 in Section 2. We prove the left-connectedness for all the
left cells in Dy in Section 3. Finally, we give an explicit description for all the cells of (Eg, Z)
and show that each left (respectively, two-sided) cell of the weighted Coxeter group (£~33,l7) is

left-connected (respectively, two-sided-connected) in Section 4.

1 Preliminaries

The results in 1.1-1.5 and 1.7 follow Lusztig in [1].

1.1 Let (W, S) be a Coxeter system with £ its length function and < the Bruhat-Chevalley
ordering on W. An expression w = s182---8, € W with s; € S is called reduced if r = £(w).
By a weight function on W, we mean a map L from W to the integer set Z satisfying that
L(s) = L(t) for any s,t € S conjugate in W and that L(w) = L(s1) + L(s2) + - -+ + L(s,) for
any reduced expression w = s152--- s, in W. (W, L) is called a weighted Coxeter group.

A weighted Coxeter group (W, S) is called in the split case if L = £.

Suppose that there exists a group automorphism « : W — W with a(S) = S. Let
We = {w € Wla(w) = w}. For any a-orbit J on S, let wy; € W< be the longest element in
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the subgroup W; of W generated by J whenever the cardinal |W;| of the set W is finite. Let
S, be the set of elements w; with J ranging over all such a-orbits in S. Then (W?,S,) is a
Coxeter group and the restriction to W of the length function ¢ : W — N is a weight function
on W®. The weighted Coxeter group (W%, {) is called in the quasi-split case.

1.2 Let A = Z[v,v™!] be the ring of Laurent polynomials in an indeterminate v with
integer coefficients. Denote v,, = v=(*) for any w € W. Define a ring involution a — @ of A by
setting W =>",a;v~", where a; € Z. Define A, = {f € A|deg f <m} for any m € Z.

1.3 For any w,x,y,z € W and s € S with sz < x < y < sy, define p, ., M7, € A

recurrently by the following requirements: ’

(1.3.1) pow =0 if 2 L w, py,w = 1 and p.., € Acg if 2 < w;

(1.3.2) prw = VD2 sw + Psz,sw — Zzgz/<sw752,<2, M) D2,z for z < w and sw < w, where
e=11if sz < z, and e = —1 if sz > z (see [1, The proof of Theorem 6.6]);

(1.3.3) D ncocysncs M2 yP,2 = Uspa y(mod Aco);

(1.3.4) M3, = M;,.

The condition (1.3.3) determines the coefficients of v* in M, for all k > 0; then (1.3.4)
determines all the other coefficients (see [1, Proposition 6.3]).

1.4 Define a preorder % (respectively, %) on W which is transitively generated by the re-

lation y cw (respectively, y o w), where w < sw, and either y = sw or M., #0 (respectively,
w < ws, and either y = ws or M;,l w—1 7 0) holds for some s € S. The equivalence relation
associated to this preorder is denoted by > (respectively, }J) The corresponding equivalence

classes in W are called left cells (respectively, right cells) of W. Write y < w in W, if there
LR
exists a sequence yo = Y, y1, - , Y = w in W with some r > 0 such that for every 1 < i < r,

either y;—1 < y; or y;—1 < y; holds. The equivalence relation associated to the preorder < is
denoted by ZVR and the cc?rresponding equivalence classes in W are called two-sided cells oLfRI)/V.

1.5 For w € W, define L(w) = {s € S|sw < w} and R(w) = {s € Slws < w}. If
y,w € W satisfy y < w (respectively, y < w), then R(y) 2 R(w) (respectively, L(y) 2 L(w)).
In particular, if y ALJLw (respectively, y fgw), then R(y) = R(w) (respectively, L(y) = L(w))
(see [1, Lemma 8.6]).

1.6 In [7, Chapter 13|, Lusztig defined a function a : W — NU{oo} in terms of structural
coefficients of the Hecke algebra associated to (W, L). Then he proved the following results (1)-
(2) when W is either a finite or an affine Coxeter group and when (W, L) is either in the split
case or in the quasi-split case in [1, Chapters 14-16].

1)y L<R w in W implies a(w) < a(y). Hence y oW in W implies a(w) = a(y).

(2) If w,y € W satisfy a(w) = a(y) and y % w (respectively, y § w, Y L<R w), then y W
(respectively, y YWY w).

In [13], Lusztig proved the following results (3)-(4) when W is either a finite or an affine
Coxeter group and when (W, L) is in the split case.

(3) For any I C S, let W} be the subgroup of W generated by I. If W7 is finite, let wy be
the longest element of Wy, then a(wy) = ¢(wy).
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(4) For any nonnegative integer 4, let W;) = {w € Wla(w) = i}, then W(; is either empty
or a union of some two-sided cells of W.

1.7 For w € W, we denote by A(w) the nonnegative integer defined by
Dew = nev 2 4 strictly smaller degree terms inv, withn,, € Z — {0}.

Note that A(e) = 0,0 < A(w) < L(w) for w # e. Let D = {w € Wla(w) = A(w)}.

Lusztig called the elements of D by distinguished involutions and proved that each left
cell of W contains a unique distinguished involution when W is either in the split case or in
the quasi-split case.

1.8 Let K be a non-empty subset of W. Two elements z,y € K are called left-connected

(respectively, right-connected, two-sided-connected) in K, written x—y (respectively, z K—y,

xKVLRy), if there exists a sequence rg = z,x1,...,z, = y in K w1th some 7 > 0 such that
xi_lel € S (respectively, x;lxi_l € S, either xi_lel e S or x;lxi_l € S) for every
1 <4 < r. This defines an equivalence relation on K. Each equivalence class of K with respect
to . (respectively, x y, xK—y) is called a left-connected (respectively, right-connected,
two-sided-connected) component of K. The set K is called left-connected (respectively, right-
connected, two-sided-connected), if K consists of a single left-connected (respectively, right-
connected, two-sided-connected) component.

1.9 Let s,t € S satisfy o(st) = 3. By a right {s,t}-string, we mean a set {ys,yst} with
y € W satisfying R(y) ({s,t} = 0; by a left {s,t}-string, we mean a set {sy,tsy} with y € W
satisfying L(y) ({s,t} =0

We say that x is obtained from w by a left (respectively, right) {s,t}-star operation, if
{z,w} is a left (respectively, right) {s,t}-string. Note that the resulting element x for a left
(respectively, right) {s, t}-star operation on w is always unique whenever it exists.

Sometimes we call a right {s,¢}-string and a right {s,t}-star operation simply by a right
string and a right star operation, respectively. Similarly for the left version of those terms.

We have the following results 1.10-1.12 when (W, L) is in the split case:

Lemma 1.10 (see [14]) Let s,t € S be with o(st) = 3. Suppose that {x1,x2} and {y1,y2}
are two right (respectively, left) {s,t}-strings. Then

(a) T1—y1 & Ta——Y2;

(b) z1 Y & T9 v Y2 (respectively, x1 ~ Y & T9 ~ ya).

1.11 We say that z,y € W form a right primitive pair, if there exist two sequences
To=T,%1, - ,Tn and yo =y, Y1, -, Yn in W satisfying:

(a) For any 1 < @ < n, there exist some s;,t; € S with o(s;t;) = 3 such that both {x;_1,2;}
and {y;—1,y;} are right {s;,t; }-strings.

(b) x;—y; for some (hence all) i, 0 < i < n.

(c) Either R(z) € R(y) and R(yn) € R(zn), or R(y) € R(z) and R(zyn) € R(yn).

Note that any right strlng x,y of W form a right primitive pair with n = 0 in the above
definition.

Similarly, we can define a left primitive pair in W.
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Lemma 1.12 (see [15]) If z,y is a right (respectively, left) primitive pair, then x ~Y

(respectively, x ~ y).

2 Some known results on the group D, and Eg

2.1 Let S = {s; | 0 < i < 4} be the generator set of Dy with o(s;s2) = 3 and
o(sis;) =2 for i # j in {0,1,3,4}. Let o : Dy — Dy be the group automorphism determined
by a(s;) = s; for 0 <i < 2 and a(s;) = sy, for j # k in {3,4}. Then the affine Weyl group Bs
can be realized as the fixed point set of Dy under . Let S = {t;J0 < i < 3} be the Coxeter
generator set of £~33, where t; = s; for 0 <7 < 2 and t3 = s354.

Let £, ¢ be the length functions on the Coxeter systems (ﬁ4, g), (£~33, S), respectively. By
the definition in 1.1, the weighted Coxeter group (l~)4, Z) is in the split case, while (Eg, Z) is in
the quasi-split case (see [1, Lemma 16.2]).

From now on, we concentrate ourselves to the weighted Coxeter groups (ﬁ4, Z) and (£~33, Z)
We preserve the notation <, £(w), R(w), a(w), A(w), D for the group (Bs, £), but denote them
by <, L(w), R(w), a(w), A(w), D, respectively for the group (Dy, £).

2.2 Since the condition z < y is equivalent to x < y for any z,y € £~33, it will cause no
confusion if we use the notation < in the place of % Hence from now on we shall use < for
both < and %

The following fact can be checked easily.

For any w,y € Bs and 0 < i < 2, we see that ¢; € £(w) if and only if s; € £(w) and that
t; € R(w) if and only if s; € R(w). Also, t3 € L(w) if and only if s3 € L(w) if and only if
sy € L(w); ts € R(w) if and only if s3 € R(w) if and only if s4 € R(w).

Lemma 2.3 (see [1, Lemma 16.5)) a(w) = a(w) for any w € Bs.

Lemma 2.4 (sec [1, Lemma 16.14]) Let 2,y € Bs. Then x Y (respectively, x ~ y) in
Bs if and only if x Y (respectively, x ~ y) in Dy.

By Lemma 2.4, we can just use the notation x >y (respectively, ~ y) for z,y € £~33
without indicating whether the relation refers to the group Dy or Eg.

Let T be a left cell of Dy. Denote IV = T'N Bs.

Corollary 2.5 IfI" 0, then I" is a left cell of Bs.

Proof It is a direct consequence of Lemma 2.4.

Lemma 2.6 (sce [1, Lemma 16.6]) D = DN Bs.

Denote the distinguished involution of 54 in the left cell " by dr.

Corollary 2.7 TV # 0 if and only if a(dr) = dr.

Proof By Corollary 2.5 and Lemma 2.6, we get the result.

3 The left-connectedness of left cells in b4

In the present section, we want to prove the following theorem.
Theorem 3.1 Any left cell of Dy is left-connected.
For simplifying the notation, we denote s; € S by the boldfaced letter i for any 0 < ¢ < 4.
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Following Shi in [10,12], we define, for any left cell ' and any two-sided cell © of the
weighted Coxeter group (Dy, £) or (Bs, £), the following sets

ET) :={w e T | a(sw) < a(w),Vs € L(w)},
Emin(T) :={w € T | {(w) < {(z),Vz €T},
EQ) :={w € Q| a(sw) < a(w),Vs € L(w)},
F(Q) :={w € Q| a(sw),a(wt) < a(w),Vs € L(w),t € R(w)}.

Recall the relation on a non-empty set K of W defined in 1.8. The following result is

K
crucial in proving the left-connectedness of a left cell of Dy.

Lemma 3.2 Let T be a left cell of Dy. If Ty for any x # y in E(T) then T is
left-connected.

The proof of Lemma 3.2 is the same as that of Lemma 2.3 in [15], hence we omit it here.

For any ,y, z in Dy, we use the notation z = z-y to indicate z = zy and £(z) = £(z)+{(y).

As a consequence of the results in [10, 12, 16], we have

Lemma 3.3 Let w, I', Q be an element, a left cell and a two-sided cell of Dy respectively
with a(w),a(T),a(Q) < 6. Then

(a) w has an expression of the form w =z -wy -y for some z,y € Dy and some J C S
with U(wy) = a(w).

(b) For any w € E(T), write w = wy -y with J = L(w) for some y € Dy. Then
U(wy) = a(w).

(c) If E(T') = Enin(T') then T is left-connected.

(d) F(Q) ={w;€Q]JCS}.

Let Q be a two-sided cell of Dy. In [12], Shi designed the following algorithm for finding
the set E() from F(£2).

Algorithm 3.4

(1) Set Yy = F(Q);

Let k > 0. Suppose that the set Yy has been found.

(2) If Yy, = 0, then the algorithm terminates;

(3) If Yy # 0, then find the set Yy = {xs |z € Yy, s € S\ R(z);zs € B(Q)}.

The most technical part in applying Algorithm 3.4 is to determine whether or not an
element s is in the set E(), that is, to determine if the relations a(tws) < a(ws) = a(w)
holds for any ¢ € Z(ws) This is easy by using the computer programme MATLAB, since all
clements of Dy have been described explicitly by Shi in [11].

3.5 Let ¢ € N. Following [11, Section 3], we see that W # 0 unless i €
{0,1,2,3,4,6,7,12}. W(; is a single two-sided cell of Dyifie {0,1,3,4,7,12}. On the other
hand, W(; is a union of three two-sided cells (written ; 1, €2; 2 and Q; 3) of Dy ific {2,6},
where the two-sided cells {2;; are determined by the conditions wg1 € Qg.1, wez € a2,
woa € a3, worz € 6,1, w12z € 62, wiza € (63, Where we denote wy by wijk... for
J = {si, s,k }
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Let & be the group of all permutations o on the set {0, 1,2, 3,4} satisfying o(2) = 2. Let
f» be the automorphism of Dy satisfying f,(s;) = 5q(i) for any s; € S. We denote f(ij) simply
by fij, where (ij) is the transposition of ¢ and j for ¢ # j in {0, 1,3,4}. We get Q22 = f13(Q2.1),
Qa5 = f14(Q2.1), Q6.2 = f03(Q6.1), Q6.3 = f04(Q6,1) from [11, Section 4].

3.6 Forie N, let ¥; be the set of all left cells T' of Dy with @(I') = i. By Lemma 3.3(d)
and the results of Shi in [11], we get

F(W(yy) =1{0,1,2,3,4}, F(W3)) = {woz, w12, w23, W24, Wo13, Wo14, Wo34, W134 },

F(W(4)) = {wo134}, F(W(12)) = {wo123, Wo124, Wo234, W1234},

F(Q2,1) = {wor, wsa}, F(Q2,2) = f13(F(Q2,1)), F(Q2,3) = fra(F(€2,1)),

F(Q6,1) = {wo12, w234}, F(6,2) = fo3(F(2s6,1)), F'(Q6,3) = foa(F(£26,1))-

We also have F(W(7)) = {i2ki2ij2i| i,j,k € {0,1,3, 4} distinct} by a result of Shi in [12,
Section 4.7].

So we can perform Algorithm 3.4 to get E(Q) for all two-sided cell  of Dy with a(Q) €
{1,2,3,4,6,7,12} (see Tables 1-7 for the results). Since E(Q22) = fi3(E(Q2,1)), E(Q23) =
f12(E(221)), E(Q6.2) = fo3(E(26.1)), E(Q6,3) = foa(E(26,1)), it allows us not to include E(T")
for any I' C Q; 1, ¢ € {2,6} and k = 2,3 in the list for saving the space.

3.7 1In Tables 1-7, if i € {1,3,4,7,12}, then we denote all the left cells in W; by
Iij, 1 < j < n(i), where n(i) stands for the number of left cells in W(;); if i € {2,6}, then
we denote all the left cells in Q; %, k = 1,2,3, by I'igj, 1 < j < ng(4), where ng(2) = 8
and nx(6) = 48, k = 1,2,3. For saving the space in the tables, we denote {s;,s;,sg,...}
simply by 1i,j,k,--- concerning the set 75(1“) For example, the set {s1,s2, 53,55} is denoted
by 1,2,3,5. However, we only include E(I'7;) and E(T'12%) in Tab.6 and Tab. 7 respectively,
because E(I'724+:) = f1a(E(I'7:)), E(T74s1:) = f3a(E(T7,)), ET7,7240) = fora(E(T7,)),
E(T12484k) = fus(ET12%)), ET12,964%) = foa(E(T12,%)), E(T12,1444%) = f3a(E(T12,1)), 1 <
i < 24,1 < k<48 (see [11, Section 5]).

We observe from Tables 1-5 that all the elements of E(T") have the same length for any
left cell ' with a(T") € {1,2,3,4,6}. So for those left cells I', we have E(I') = Ey,in(T') and hence
T is left-connected by Lemma 3.3 (c). Since E(T') contains only one element for any left cell T'
in ilg (see Tab. 7), T is left-connected obviously. Thus, to show Theorem 3.1, we need only to
deal with all the left cells of Dy in X7. By Lemma 3.2, we shall prove the left-connectedness of
those left cells I' by showing that x:y for any  # y in E(T') by a case-by-case argument.

3.8 We proceed our proof by constructing some connected graphs. Those graphs are
named by Figures ¢, i = 1,2, 3,4, respectively. One connected graph (say Figure i) for each
left cell T" in §7, each vertex of Figure ¢ represents an element (say z) of ﬁ4 which is labeled
by E(z), all the elements of E(T') must occur as vertices in the graph Figure i. Two vertices
are joined by a solid edge if they form a left string. The connectedness of the graph Figure ¢
implies that all the elements corresponding to the vertices of Figure ¢ belong to I' by Lemma
1.12, which implies that I" is left-connected by Lemma 3.2.

Example 3.9 We take Figurel as an example to illustrate how we prove the left-
connectedness for the left cell T' := T'z;. We have E(I') = {a,b,c} with a =
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02301240123420124, b = 01230123401230124 and ¢ = 12301240123420124 by Table 6.
0,2,3./0,1,2 \ \ 1,23 \ respec-
tively. The vertex labeled by in Figure 1 corresponds to the element a’ := 1a = 3b = Oc.

By the fact that the vertices labeled by ‘ 0,2,3 ‘ and ‘ 0,1,3 ‘ in Fig.1 are joined by a solid
edge, we conclude that {a,a’} form a left {1,2}-string. The same argument tells us that {b, a’}
form a left {2, 3}-string and that {c,a’} form a left {0, 2}-string. This implies by Lemma 1.12
that a—=b——-—c for I' =I'7 ;. Hence I'7; is left-connected by Lemma 3.2.

'y T'p

The elements a, b, ¢ all occur as vertices of Figure 1 with labels

Tab.1 Description of left cells in il
r 'ip T2 Tz Tia TIis
ET) 0 1 2 3 4
RI) 0 1 2 3 4

Tab.2 Description of left cells in iz
Po1n To12 To13 Tora Tors Toie Torr Tois
ET) 01 34 012 342 0123 0124 3420 3421
R() 0,1 3,4 2 2 3 4 0 1

Tab.3 Description of left cells in f]g

T Tz T'z2 Tz T34 Ts5 s Pz s s T's,10
E(F) 0201,1201 020 0230,2320 121 1231,2321 232 2423,2324 1241,2421 242 0240,2420
ﬁ(l—‘) 0,1 0,2 0,3 1,2 1,3 2,3 3,4 1,4 2,4 0,4

Iz1n I'sji2 T'siis I'sna I'sis I'sie I's;ir I's;iis I's;ie I'seo0 I'sier I'see

E(F) 0132 0142 0342 1342 013 01324 014 01423 034 03421 134 13420

7%(1—‘) 2 2 2 2 0,1,3 4 0,1,4 3 0,3,4 1 1,34 0

Tab.4 Description of left cells in §4

T 4,1 Ty | T4 Ty5 T46 T4z Ty8 T4 T'4,10
E(F) 0134 01342 013420 013421 013423 013424 0134201 0134230 0134240 0134231
R() 0,1,3,4 2 0,2 1,2 2,3 2,4 0,1 0,3 0,4 1,3

T T4,11 Ty,12 4,13 T4,14 T4,15 T'4,16 4,17 T4,18

E(F) 0134241 0134234 01342301 01342401 01342340 01342341 013423012 013424012
R(I) 1,4 3,4 0,1,3 0,1,4 0,3,4 1,3,4 2 2
T 4,19 T'4,20 T4,21 Ty,22 T4,23 4,24
E(F) 013423402 013423412 0134230124 0134240123 0134234021 0134234120
R(T) 2 2 4 3 1 0

Tab.5 Description of left cells in f]s

r Te1,1 Te1,2 Is1,3 T61,4 Ts1,5 Ts1,6 Te1,7 Ts1,8 Ts1,9
E(F) 012012 234234 0120123 0120124 2342340 2342341 01230123 01201234 01240124
R() 01,2 234 01,3 0,1,4 0,3,4 1,3,4 2,3 0,1,3,4 2,4
T T's1,10 Ie1,11 61,12 e1,13 61,14 Ie1,15 Is1,16 Te1,17

E(F) 23423401 23423402 23423412 012301234 012012342 012401234 234234012 234234021
R() 0,1,3,4 0,2 1,2 3,4 2 3,4 2 0,1
r Ie1,18 T61,10 I's1,20 Ie1,21 T61,22 61,23 61,24

E(I) 234234120 0123012342 0120123420 0120123421 0124012342 2342340120 2342340121
R(T) 0,1 2,4 0,2 1,2 2,3 0,2 1,2
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Continue of Tab. 5

T Te1,25 61,26 Te1,27 T'61,28 T'61,20 T'61,30 61,31
E(F)234234012$342340124 01230123420 01230123421 01201234201 01240123420 01240123421
R(I) 2,3 2,4 0,4 1,4 0,1 0,3 1,3

T 61,32 T'61,33 T'61,34 T'61,35 61,36 Te1,37
E(F) 23423401230 23423401240 23423401231 23423401241 23423401234 012301234201
R(I) 0,3 0,4 1,3 1,4 3,4 0,1,4

r 61,38 61,39 61,40 T61,41 61,42 T'61,43
E(F) 012401234201 234234012340 234234012341 0123012342012 0124012342012 2342340123402
R(T) 0,1,3 0,3,4 1,3,4 2 2 2

r T61,44 T61,45 T'61,46 Te1,47 I61,48
E(F) 2342340123412 01230123420123 01240123420124 23423401234021 23423401234120
R(I) 2 3 4 1 0

Tab. 6 Description of left cells in fh

T I'71 I'72 I'73 I'74

E() a=02301240123420124 a=0230124012342012 a=023012401234201 a=023012012342
b=01230123401230124 b=0123012340123012 b=012301234012301 b=012301234012
c=12301240123420124 ¢c=1230124012342012 ¢=123012401234201 ¢c=123012012342

R(T) 4 2 0,1,3 2
Figure Figure 1 Figure 1 Figure 1 Figure 1
r I'7s I'76 I'77 I'7s I'70 I'7.10

E(I') a=02301201234 a=0230120123 a=012301231 a=0123012341 a=023012012 a=0230120124
b=01230123401 b=0123012301 b=023020123 b=0230201234 b=123012012 b=1230120124
c=12301201234 ¢=1230120123

ﬁ(F) 0,1,3,4 0,1,3 1,2,3 1,3,4 0,1,2 0,1,4
Figure Figure 1 Figure 1 Figure 2 Figure 2 Figure 3 Figure 3
r I'7,11 I'7,12 I'7.13 I'714 I'7.15

E() a=012301230 a=0123012340 a=02301240124 a=01230123402 a=01230123412
b=123120123 b=1231201234 b=12301240124 b=12312012342 b=02302012342

R(D) 0,2,3 0,3,4 2,4 2,4 2,4
Figure Figure 4 Figure 4 Figure 3 Figure 4 Figure 2
r I'7,16 717 I'718 I'7,19 I'7 20

E(I') a=012301234120 a=023012401234 a=012301234021 a=0230120123420 a=02301240123420
b=023020123420 b=123012401234 b=123120123421 b=0123012340120 b=01230123401230
c=1230120123420 c=12301240123420
R(D) 0,4 3,4 1,4 0,2 0,3
Figure Figure 2 Figure 3 Figure 4 Figure 1 Figure 1

r I'7,01 I'7,22 I'7,23 I'7,24
E(T) a=0230124012342 a=02301240123421 a=0230120123421 a=02301201234201
b=0123012340123 b=01230123401231 b=0123012340121 b=01230123401201
c=1230124012342 ¢c=12301240123421 ¢=1230120123421 ¢=12301201234201
R(I) 2,3 1,3 1,2 0,1
Figure Figure 1 Figure 1 Figure 1 Figure 1

Tab. 7 Description of left cells in iu

r Ti2,1 Ti2,2 Ti2,3 Ti2.4 Ti2,5 Ti2.6
E(I) 012301230123 0123012301234 01230123012342 012301230123420 012301230123421 012301234012342
R(T) 0,1,2,3 0,1,3,4 2,4 0,2,4 1,2,4 2,3,4

r Ti2,7 Ti2,8 Ti2,9 Ti12,10 Ti2,11
E(I') 0123012301234201 0123012340123420 0123012340123421 01230123012342012 01230123401234201
R(T) 0,1,4 0,3,4 1,3,4 0,1,2 0,1,3,4

r Ti2,12 T12,13 Ti2,14 T12,15 Ti2,16

E(T) 01230123401234020 01230123401234121 012301230123420123 012301234012342012 012301234012340201
R(T) 0,2,3 1,2,3 0,1,3 2 0,1,3
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Continue of Tab.7

r Ti2,17 Ti2,18 12,10 T12,20
E(I') 012301234012341201 0123012340123420123 0123012340123412012 0123012340123402012
R(T) 0,1,3 2,3 0,2 1,2
r 12,21 12,22 Ti2,23 Ti2,24
E(T') 0123012340123420124 01230123401234120123 01230123401234020123 01230123401234201234
R(T) 2,4 0,2,3 1,2,3 3,4
r Ti2,25 T12,26 Ti2,27 Ti12,28
E(I') 01230123401234012012 01230123401234120124 01230123401234020124 012301234012340120123
R(T) 0,1,2 0,4 1,4 0,1,3
r Ti12,29 T12,30 Ti12,31 T12,32
E(I') 012301234012341201234 012301234012340201234 012301234012340120124 0123012340123401201234
R(T) 0,3,4 1,3,4 0,1,4 0,1,3,4
r T12,33 T12,34 T12.35 Ti12.36
E(I) 0123012340123412012342 0123012340123402012342 0123012340123401240124 01230123401234012012342
R(T) 2,4 2,4 2,4 2
r T12,37 T12,38 T12,39 T12,40
E(I) 01230123401234120123421 01230123401234020123420 01230123401234012401234 012301234012340120123420
R(T) 1,4 0,4 3,4 0,2
r Fi2,41 12,42 T'i2,43
E(I') 012301234012340120123421 012301234012340124012342 0123012340123401201234201
R(T) 1,2 2,3 0,1
T Flgy47 1—‘12,48
E(I') 012301234012340124012342012 0123012340123401240123420124
R(T) 2 4
b
0,1,2
3
a 1 0 c a 3 1 b
] [ ] |
0,2,3] 10,1,3| 11,2,3 0,1,2 0,1,3 0,2,3
Fig. 1 Fig. 2
a 1 0 b a 3 0 b
] [
0,2,3] {0,1,3} 1,23 0,1,2 0,1,3 12,3
Fig. 3 Fig. 4

4 Cells of the weighted Coxeter group (153,57)

4.1 Recall in 3.6 that we defined the set 3; in the group Dy for any ¢ € N. Let ¥; be
the set of all left cells in the weighted Coxeter group (Eg,?) and let n; = |%;]. By Corollary
2.5, we have ¥; = {L N B3 | I € %;,' N B3 # ()} for any i € N.

Let us use some special notation for the left cells of (Eg, Z) as follows: For i # 2,6, denote
I} =10 Bs for any T'; ; € &; with T;; N Bs # 0. On the other hand, for i € {2,6}, denote
F;k,j := Tk, ; N Bs for any Ty, ; € ¥; with Ty, ; N Bs # 0.

For example, I'y 16 € Xy satisfies 'y 16 N B3 # (), so I} 15 := I'4,16 N B3 is a left cell of Bs.

In the subsequent discussion, when we mention a left cell IV of Bs, we mean IV = I' N Bj
for some left cell I' of l~)4.

Theorem 4.2 (ng,ny,n2, N3, N4, N, N7, n12) = (1,3,6,10,12, 24,24, 48).

Proof By the knowledge of the set D in [17], we can get the set D = {d € D | a(d) = d}
(see 2.1 for @) by Lemma 2.6. So we get the numbers n; by a direct counting in D and by
Lemma 2.3, Corollaries 2.5 and 2.7.
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The weighted Coxeter group (Eg, Z) contains 128 left cells in total by Theorem 4.2. In the
proof of Theorem 4.2, we actually get the following results.
Yo = {1"6 1}, where 1"6,1 = {e};
Y = {Fl 1 1 129 /1.,3};
Yo = {F21,17F21,27FI21,37F121,47FI21,77FI21,8}§
s = {151,055, 1% 4, 1% 7,19 13,15 145 1% 10: 19 20, 19 21, T2 20}
E4 = {Pil.,la Fﬁl,Qv 21,3’ ﬁ1,4’ Fﬁl,% Pil.,127 Pil.,lS? Pil.,lﬁv Pil.,197 Pil.,QO? Pil.,QB? Pil,24};
X6 = {Fél,lvrél 2: 0615 T61,6: T61,8: T61,100 T61,11 L1, 125 F/61,147F%1 16: 61,17 L61,185 T61,205
61,215 L6, 23a 61, 247F61 29a 61,36> 161,30, L'61,400 U143, Lo, 447F61 47, TGy, 48}
L7 =A{T7 s, 7 2601720717 28: 17,20 17 30: 17 31 17 32, 17 130, 17,405 7,435 U7 460 17 73 17 74, T7 75,
U776 07,7717 78 17 70: T7 80 D7 875 D785 7,01, 17,04 )5
L2 = {2.49: 250, 112,515 D252, 2,575 D250, 2,615 D263 Ti2,650 D267 Ti2,600 D271 T2 74
I'2.76: 12,780 Di2,800 Di2,82: Di2.sa0 T2,s60 T12,880 112,030 112,045 12,050 12,060 Ti2,075 T2 085
T19.90: 12,1015 T2,1040 Ti2,107: Ti2,108: Ti2,011 Th2,0120 Th21160 D217 Dz 11s T2 123
L2124 T2,125: T12,1280 Ti2,1200 Th2,132: T12,1885 T2, 187 T2,1400 Ti2,1420 T2 143 12,144 -
4.3 Let IV = I'N B be a left cell of (Bs,¢) for some left cell T of Dy. Then the set
Epnin(TY) can be described as follows.
(1) If T € %, i € {1,2,4,6,12}, then E(T") C Bs and |E(T)| = 1. Hence Epin(I) = E(T).
(2) If TV € X3, then there are three cases:
(2a) When I = T% ;, we have E(T'3 1) = {a,b} C Bs with a = 0201, b = 1201, where
1-a=0-bel%y;. Hence Eyin(T3 ;) = E([3,1).
(2b) When I =T} ;, we have E(I's 7) = {a,b} N B; = () with a = 2423, b = 2324. Then
c:=3-a=4-be€ Bs. Hence Enin(I's ;) = {c}.
(2c) When I ¢ {T'3 1, T3 7}, we have E(T") C Bz and |[E(T')| = 1. Hence Eyi,(I7) = E(T).
(3) If L’ € 37, there are two cases:
(3a) E(T) = {a,b}, EC)NBs =0 and c:=3-a=4-b € I". Hence Fmin(I") = {c}.
(3b) E(T') = {a,b,c}, E(') N Bs = {c} and, either 4-a =3-b=1-ceI’ ord-a =
3:-b=0-ceI. Hence Enin(I") = {c}.
We display the sets Emin(I") for all left cells IV € Ui<12 Y; in Tables 8-14.
Tab.8 Description of left cells in X

r Mo Ty T
Emin (F/) 0 1 2

Tab.9 Description of left cells in X2

r F,21,1 IMyio oy F,21,4 Y7 F,21,8
Emin(F’) 01 34 012 342 3420 3421

Tab.10 Description of left cells in 33
F, F; 1 Fé 2 F; 4 F; 7 Fé 13 F; 14 F; 19 F; 20 Fé 21 F; 22
Emin(l—‘/) 0201, 1201 020 121 3-a=4-b=4-2324 0342 1342 034 03421 134 13420

Tab.11 Description of left cells in 34
r Tha Tho  Thg Ty Tyr Tlao Thas YRT Tlhao
Emin(l—‘/) 0134 01342 013420 013421 0134201 0134234 01342340 01342341 013423402
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r i120 i123 Fil.24
Eumin(T’) 013423412 0134234021 0134234120

Tab.12 Description of left cells in 3¢

’ / ’ ’ / ’ / ’ ’
r 61,1 F61 2 F61 5 61,6 F61 8 1—‘61,10 F61 11 F61 12

Enin(IY) 012012 234234 2342340 2342341 01201234 23423401 23423402 23423412

/ / / / / / / /
r 1—‘61.14 1—‘61.16 F61 17 F61 18 1—‘61.20 1—‘61.21 F61 23

Emin(IY) 012012342 234234012 234234021 234234120 0120123420 0120123421 2342340120

/ / / / / / /
r 1—‘61 24 1—‘61.29 1—‘61 36 1—‘61 39 1—‘61.40 1—‘61.43

Enin(TY) 2342340121 01201234201 23423401234 234234012340 234234012341 2342340123402

/ ! ! !
r 61,44 61,47 61,48

Enin(l7) 2342340123412 23423401234021 23423401234120

Tab.13 Description of left cells in 3~

7 7 7 7 7 7
r 7,25 7,26 7,27 I'7,28 7,29
Eoin(l]) c=23423402341234021 c—2342340234123402 c—234234023412340 c=234234023412 c=23423402341
7 7 7 7 7
r I'7,30 I'7,31 7,32 7,39

Epnin(T’) ©=2342340234 3 -a =4-b=4-023024023 3-a =4-b =4 02380240231 3-a =4 b =4 02302402312

7 7 7 7 7
r I‘7 40 1—‘7 43 I‘7 46 1—‘7 73

Emin(l') 3-a=4-b=4-023024023120 c=2342340234120 c=23423402341234 c=23423412340234120

/ / 7 / 7 /
r F7 74 I‘7 75 F7 76 I‘7 i F7 78

Emin (') ¢=2342341234023412 c=234234123402341 c=234234123402 c=23423412340 c=2342341234

F/ F/ F/ F/
7,79 7,80 7,87
Fuin(l') 3-a=4-b=4-123124123 3 -a—4-b—=4 1231241230 3-a=4-b=4- 12312412302
F/ 1—‘,7,88 P/7,91 1—‘,7,94

Emin(I’) 8-a=4-b=4-123124123021 c=2342341234021 c=23423412340234

Tab.14 Description of left cells in X2

7 7 7 7 7 7
r r12,49 l—‘12,50 F12,51 r12,52 1—‘12,57

Emin (') 023402340234 0234023402341 02340234023412 023402340234120 0234023402341234

7 7 7 7 7
r P12 59 P12 61 P12 63 1—‘12 65

Emin (') 02340234023412340 02340234012341234 023402340234123402 023402340123412340

F/ F/12 67 I‘,12 69 F/12 71 I‘,12 74
FEmin(T') 0234023401234123402 0234023402341234021 02340234023412340234 02340234012341234021
F/ F;2 76 F;2 78 F/12 80
Emin(I’) 023402340123412340234 023402340234123402341 0234023401234123402341
I’ I I I
12,82 12,84 12,86

Emin(T’) 0234023402341234023412 02340234012341234023412 02340234023412340234120

7 7 7 7
r P12 88 1—‘12 93 1—‘12 94

Emin (') 023402340123412340234120 0234023401234123402341234 02340234012341234023412340

7 7 7 7
r P12 95 1—‘12 96 1—‘12 97

Emin (") 023402340123412340234123402 0234023401234123402341234021 123412341234

/ 7 7 7 7 /
r I‘12 98 I‘12 99 F12 101 I‘12 104 F12 107

Emin(T’) 1234123412340 12341234123402 123412341234021 1234123412340234 12341234123402341

7 7 7 7 7
r F12 108 F12111 F12112 F12116

Emin(T’) 12341234012340234 123412341234023412 123412340123402341 1234123401234023412

7 7 7 7
r r12,117 1—‘12,118 P12,123

Emin(T’) 1234123412340234120 12341234123402341234 12341234012340234120

7 7 7 7
r 1—‘12 124 1—‘12 125 P12 128

Emin (') 123412340123402341234 123412341234023412340 1234123401234023412340

7 7 7 7
r P12 129 1—‘12 132 P12 133

Emin (') 1234123412340234123402 12341234012340234123402 12341234123402341234021

7 / 7 7
r F12 137 F12 140 F12 142

Emin(T’) 123412340123402341234021 1234123401234023412340234 12341234012340234123402341

7 7 7
r F12 143 F12 144

Emin(T’) 123412340123402341234023412 1234123401234023412340234120
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Lemma 4.4 Let I” be a left cell of By and let w € V. Then w = wy - wo for some
wo € Enin(T') and wy € Eg.

Proof By Tables 8-14, there are three possible cases:

(1) Enin(I”) = E(T'). By the definition of E(T'), we can write w = wy - wy for some
wo € Emin(T) and wy € l~)4. In this case, we have wy; = wwa1 € Eg.

(2) G(L') = {¢} with ¢:=3-a =4-band ET) = {a,b} for some a,b € Dy — Bs. It is
evident that {3,4} C £(3-a), 4 € L(a) and 3 € L(b). Let y = 4a. Thena=4-y and b= 3-y.
Since 3-a =34y € Eg, we have y € Eg. Hence for any w € IV, we have w € {wz-4-y,ws-3-y}
with some wy, w3 € Dy by the definition of E(T'). Denote 2 = wy ™', then z € {w; - 4, ws - 3}.
If 2 = wy - 4 then 4 € R(z). Since z € Bs, we get {3,4} C R(x). So z = 2’ - 34 for some
2/ € By, then w = 2/ - 43 -y = 2’ - 3- a. By a similar argument, we see that if z = ws - 3, then
there is some 2z € By with w = 2 - 43 - y=1a"-3a.

(3) Emin(I'") = {c} with E(T") = {a,b,c} and either4-a =3-b=0-cor4-a=3-b=1-c.
Assume 4-a =3-b=0-c (The case 4-a =3 -b =1"-c can be dealt with similarly). Then
{0,3,4} C £(4-a), so {0,3} C L(a), {0,4} C L(b) and {3,4} C L(c). Denote y := 03a (hence
y=04b=34c). Thena=03-y,b=04-yand c=34-y. Sincec=34-y € £~33, we get y € £~33.
By the definition of E(T"), we have w € {wq - 03 -y, w3 - 04 -y, w4 - ¢} for some wo, w3, wy € Dy.
If w = wy - ¢, then our result is proved. If w € {ws - 03 -y, w3 - 04 -y}, let x = wy~!, then
z € {wy - 03, w3 - 04}. First assume 2 = w, - 03. Then {0,3} C R(z). Since z € Bs, we have
{0,3,4} C R(z). So x = 2’ - 034 for some 2’ € Bs. Thus w = 2’ - 034 -y = 2’ - 0 - ¢. Similarly,
when z = w3 - 04, we can find some z” € Bj such that w = 2/ - 034 - y=12"-0-c, too.

Therefore, the lemma is proved.

Theorem 4.5 Any left cell of (Eg,Z) is left-connected.

Proof Recall that S = {t;]0 < i < 3} is the Coxeter gencrator set of Bs. Let I" be
a left cell of By with I” # I'; ;. By Tables 8-14, we have |Enin(I")] = 1. Any w € I can
be written in the form w = wy - wy with some wy € Funin(I7) and wy € Bs by Lemma 4.4.
Let wy = tythty-- -t be a reduced expression of wy with t; € S and x; = tjt;,, ---t,wo for
0<i<r. Then xg = w,x1, -+ , T, Tr4+1 = wo is a sequence of elements in TV by 1.6(1)(2). We

get w—wq. Hence I is left-connected.
Iy

The left cell I" = I'y ; satisfies Enin(I") = {a,b} with a = 0201 and b = 1201. By

4.3(2a), we get ar—/b. For any z,y € I, write z = 2/ - 2" and y = v/ - y for some z',y’ € By
L
and some 2", y" € FEnin(I7). We have xr—/x” and y

—y" by the argument similar to that in

L FL
the above paragraph. Since z” F—/y” , we have T Y. Therefore I'; ; is left-connected.
L L
Let I ={0,1,2,3,4,6,7,12}. For i € I, denote g, = |J Fmin(I’), 0o = U T".

r'es; res;
y for any x,y € g; withi € I.

Lemma 4.6 We have x ~ y and x
LR OiLR

Proof We claim that each g;, i € I, is contained in a two-sided cell of Eg and in a
two-sided-connected component of o;.

Since gg = {e}, the claim in this case is obviously true.

By Tab.8, we get g1 = {0,1,2}. Since 0 ~ 02 ~ 021 ~ 21 ~ 1 and 02 ~ 2, we have
0 o~ 2 o~ 1and O 2 1.

O1LR O1LR
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By Tab.9, we get go = {01, 34,012,342, 3420, 3421}. It is obvious that 01 ~ 012 and
34 > 342 > 3420 and 342 > 3421. We have 01 I 34 since 01 ~ 012 ™ 01234 v 1234 0
234 v 34 (see [11]). The claim is true for the set gs.

We display all the elements of the sets gs, g4, g6, g7, g12 in Tab.10, Tab. 11, Tab. 12,
Tab. 13, Tab. 14, respectively. To save the space, here we shall not reproduce all the elements
of g; for i =3,4,6,7,12.

For g3 (see Tab. 10), we have 134 v 2134 v 12134 > 121 and 034 v 2034 0 02034 >
020 and 134 ~ 2134 ~ 342134 ~ 34234 and 121 ~ 1210 > 01210 > 0201 ~ 020 and
134 ~ 1342 > 13420 and 034 > 0342 ~ 03421. So the claim is true for gs.

Observe Tab. 11. All the elements of g4 are in the same right-connected component of oy
and hence they are in the same right cell of Eg. The claim is proved for gq4.

From Tab. 12, we see that gs consists of two kinds of elements: the first kind of elements
are of the form 012012 - z, z € Eg which are in the same right cell of Eg and also in the
same right-connected component of og; the second kind of elements are the form 234234 - 2/,
e Eg all of which are in another right cell of £~33 and also in the same right-connected compo-
nent of gg. Since 012012 > 34012012 > 234012012 > 1234012012 > 01234012012 >
201234012012 ~ 20123401201234 ~ 201234012012342 ~ 20123401201234234 >
0123401201234234 ~ 123401201234234 ~ 23401201234234 > 3401201234234 ~
01201234234 > 1201234234 > 201234234 ~ 01234234 > 1234234 > 234234, this implies

that the set gg is contained in some two-sided cell of Eg and also in some two-sided-connected
component of og.

By Tab. 13, we see that the elements in g7 can be put into four classes according to their
reduced expressions: 2342340234 - 21, 2342341234 - 25, 0342340234 - 23, 1342341234 - z,,
zj € §3 for j = 1,2,3,4. It is evident that the members of the same class are in the
same right cell of §3 and also in the same right-connected component of og. Besides, we
find 2342340234 > 02342340234 = 03423402340 ~ 0342340234, 2342341234
12342341234 = 13423412341 ~ 1342341234, 1342341234 ~ 13423412340
134234123402 ~ 1342341234021 ~ 13423412340212 ~ 1342341234021234
13423412340212342 > 134234123402123420 > 1342341234021234201
1234210342340234120 > 234210342340234120 > 34210342340234120
210342340234120 > 10342340234120 ~ 0342340234120 ~ 034234023412

03423402341 ~ 0342340234, hence g7 is contained in some two-sided cell of £~33 and

also in some two-sided-connected component of o7.

[l 32 32 &2

SRR

By Tab.14, we know that there are totally two kinds of elements in gi3. One
kind of elements which can be written in the form 023402340234 - z where z € Eg
are in a right cell and in a right-connected component of o2, while the other kind of
elements which can be written in the form 123412341234 - 2’ where 2’ € Eg are in
another right cell and in a right-connected component of o12. Since 123412341234
1234123412340 ~ 12341234123402 ™ 1234123412340234 ~ 12341234123402342
123412341234023420 = 123421023402340234 ~  23421023402340234

R
R
L L
3421023402340234 > 21023402340234 > 1023402340234 > 023402340234, we
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see that gio is contained in some two-sided cell of Eg and in some two-sided-connected
component of ois.

The proof is completed.

Theorem 4.7 Fori € I, the set o; forms a single two-sided cell of (£~33, Z) Furthermore,
o; 1s two-sided-connected.

Proof By 1.6(1), we see that for any ¢ € I, the set o; is a union of some two-sided
cells of (Eg,?). Then Lemma 4.6 tells us that x —y for any z,y € g;. Since each left cell
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of (Eg,Z) is proved to be left-connected and contains an element of g;, this implies that o; is
two-sided-connected. Hence o; is a single two-sided cell of Eg by Lemma 4.6.

By Theorem 4.7, Lemma 2.3 and 3.5, we see that there are totally eight two-sided cells in
(B3, 0).
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