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Abstract: Let α be a group automorphism of the affine Weyl group ( eA2n, eS) with α( eS) = eS.

Affine Weyl group ( eCn, S) can be seen as the fixed point set of the affine Weyl group ( eA2n, eS)

under its group automorphism α. The restriction to eCn of the length function el2n on eA2n

can be seen as a weight function on eCn. In this paper, we give the description for all the

left and two-sided cells of the specific weighted Coxeter group ( eC3,el6) and prove that each

left cell in ( eC3,el6) is left-connected.
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0 Introduction

Denote by Z (resp., N, N∗) the set of all integers (resp., non-negative integers, positive

integers). For any i 6 j in Z, denote by [i, j] the set {i, i+ 1, · · · , j} and [j] the set [1, j]. For

any a ∈ Q, denote by ⌊a⌋ the largest integer with ⌊a⌋ 6 a and |a| the absolute value of a. For

any k ∈ Z, denote by 〈k〉 the unique integer in [2n+ 1] with k ≡ 〈k〉 (mod 2n+ 1). Denote by

|S| the cardinal of the set S.

A weighted Coxeter group (W,L) is, by definition, a Coxeter group W together with a

weight function L : W −→ N on it. Suppose that (W,L) is in the quasi-split case, W can be
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seen as a fixed point set of some Coxeter system (W̃ , S̃) under its group automorphism (denote

by α) with α(S̃) = S̃ (see [1]). Let S̃ = {si|0 6 i 6 2n} be the Coxeter generator set of the

affine Weyl group Ã2n with s2i = (sisi+1)
3 = (sisj)

2 = 1 for any i, j in [0, 2n] (write s2n+1 = s0)

with 〈j〉 6= 〈i ± 1〉. Let α be the group automorphism of (Ã2n, S̃) with α(si) = s2n−i for any

i ∈ [0, 2n]. Affine Weyl group C̃n can be seen as a fixed point set of (Ã2n, S̃) under α. We can

see the restriction to C̃n of the length function l̃2n (or l̃ in short) on Ã2n as a weight function on

C̃n. The cells of the weighted Coxeter groups (C̃3, l̃5), (C̃3, l̃7) and (C̃4, l̃7) have been described

in [2], [3], [4]. In this paper, we give the description for all the cells of the specific weighted

Coxeter group (C̃3, l̃6).

1 Cell theories of a weighted Coxeter group

Some concepts and results concerning a weighted Coxeter group will be introduced in this

section. All follow from Lusztig in [1] but Lemma 1.1 follows from Shi in [2].

Let (W,S) be a Coxeter System and l be the length function on W . An expression

w = s1s2 · · · sr ∈ W with si ∈ S is called reduced if l(w) = r. A weight function on W is,

by definition, a map L : W −→ N with L(w) = L(s1) + L(s2) + · · · + L(sr) for any reduced

expression w = s1s2 · · · sr ∈ W and L(s) = L(t) for any conjugated s, t in S. A weighted

Coxeter group (W,L) is a Coxeter group W together with a weight function L on it. In the

case L = l, we call (W,L) in the split case.

Suppose that α is a group automorphism of W with α(S) = S. Let Wα be the set of all

w ∈ W satisfying α(w) = w. For any α-orbit J on S, let wJ be the longest element in the

subgroup WJ of W generated by J . Let Sα be the set of all elements wJ with J ranging over

all α-orbits on S. Then (Wα, Sα) can be seen as a Coxeter System and the restriction of l to

Wα can be seen as a weight function on Wα. The weighted Coxeter group (Wα, l) is called in

the quasi-split case.

Let ∼
L

(resp., ∼
R

, ∼
LR

) be the equivalence relation associated to the preorder 6
L

(resp., 6
R

,

6
LR

) defined by Lusztig. The corresponding equivalence classes in W are called left cells (resp.,

right cells, two-sided cells) of W .

Denote by a the a-function on W defined by Lusztig. We have the following result.

Lemma 1.1(see [2, Lemma 1.7]) Suppose that W is either a finite or an affine Coxeter

group and that (W,L) is either in the split case or in the quasi-split case. A non-empty subset

E of W is a union of some two-sided cells of W if the following conditions (a)—(b) hold :

(a) There exists some k ∈ N with a(x) = k for all x ∈ E;

(b) The set E with E = {x|x−1 ∈ E} is a union of some left cells of W .

2 Specific weighted Coxeter groups (Ã2n, l̃2n) and (C̃n, l̃2n)

Affine Weyl group Ã2n can be seen as the following permutation group on Z (see [1]):

Ã2n =
{
w : Z −→ Z

∣∣∣(i+ 2n+ 1)w = (i)w + 2n+ 1,

2n+1∑

i=1

(i)w =

2n+1∑

i=1

i
}
.



1 1 Ï �²¸: \� Coxeter +( eC3,el6)��n(=) 29

Let S̃ = {si|0 6 i 6 2n} be the Coxeter generator set of Ã2n satisfying (t)si = t+1 if 〈t〉 = 〈i〉,

(t)si = t − 1 if 〈t〉 = 〈i + 1〉 and (t)si = t otherwise, for any t ∈ Z. Let α be the group

automorphism of (Ã2n, S̃) determined by α(si) = s2n−i for any i ∈ [0, 2n]. Any w ∈ Ã2n can

be seen as a Z×Z monomial matrix Aw = (δ(i)w,j)i,j∈Z. The row (resp., column) indices of Aw

are increasing from top to bottom (resp., from left to right).

Let S = {ti|0 6 i 6 n} be the Coxeter generator set of C̃n determined by t0 = s0s2ns0,

tn = sn and ti = sis2n−i for any i ∈ [n− 1]. Under the group automorphism α of (Ã2n, S̃), the

affine Weyl group (C̃n, S) can be seen as a fixed point set of (Ã2n, S̃) and can also be seen as a

permutation group on Z:

C̃n =
{
w : Z −→ Z

∣∣∣(i+ 2n+ 1)w = (i)w + 2n+ 1, (−i)w = −(i)w, ∀i ∈ Z

}
.

A partition of positive integer n is, by definition, an r-tuple λ = (λ1, λ2, · · · , λr) with

λ1 + λ2 + · · · + λr = n and λ1 > λ2 > · · · > λr. λi with i ∈ [r] is called a part of λ. Let Λn

be the set of all partitions of n. We usually denote λ by the form jk1

1
jk2

2
· · ·jkm

m
(boldfaced),

where ji is a part of λ with multiplicity ki > 1 for any i ∈ [m] with j1 > j2 > · · · > jm > 1.

Fix w ∈ Ã2n. Let i 6= j in [2n + 1]. We write i ≺w j if there are some p, q in Z with

2pn+p+ i > 2qn+q+ j and (2pn+p+ i)w < (2qn+q+ j)w. In terms of the entries of Aw, this

means the entry 1 at the position (2pn+ p+ i, (2pn+ p+ i)w) is located to the southwestern

of the entry 1 at the position (2qn+ q + j, (2qn+ q + j)w). Then we can define a partial order

�w on [2n+ 1] (see [2, 2.2]).

By a w-chain, we mean an integer sequence a1, a2, · · · , ar in [2n + 1] satisfying a1 ≺w

a2 ≺w · · · ≺w ar. A k-w-chain-family with k > 1 is, by definition, a disjoint union of some

k w-chains. Denote by dk the maximally possible cardinal of all k-w-chain-families. Then

d1 < d2 < · · · < dr = 2n with some r > 1. Let λ1 = d1 and λi = di − di−1 for any i ∈ [2, r].

By a result in [6] we have λ1 > λ2 > · · · > λr. Then a map ψ from Ã2n to the set Λ2n+1

can be defined by setting ψ(w) = (λ1, λ2, · · · , λr) for any w ∈ Ã2n. For any λ ∈ Λ2n+1, let

Eλ = ψ−1(λ) ∩ C̃n.

Let i 6= j in [2n]. Two integers i, j are called 2n-dual if i+ j = 2n+ 1 (we denote ī = j).

i, j are called w-comparable if i ≺w j or j ≺w i and w-uncomparable if otherwise. The integer i

is called w-wild (resp., w-tame) if i, ī are w-comparable (resp., w-uncomparable) and a w-wild

head (resp., a w-tame head) if i with (̄i)w < (i)w is w-wild (resp., w-tame).

Denote by l̃2n (or l̃ in short) the length function on Ã2n and l the length function on

C̃n. Then the affine Weyl group (Ã2n, l̃2n) is in the split case and the weighted Coxeter group

(C̃n, l̃2n) is in the quasi-split case. For any x ∈ (Ã2n, l̃2n). Let L̃(x) = {s ∈ S̃|sx < x} and

R̃(x) = {s ∈ S̃|xs < x}. For any y ∈ C̃n. Let L̃(y) = {t ∈ S|ty < y} and R̃(y) = {t ∈ S|yt < y}.

Let mk(x) = |{i ∈ Z|i < k, (i)x > (k)x}| for any x ∈ Ã2n and k ∈ Z.

Lemma 2.1(see [2, Proposition 2.4]) Let w ∈ Ã2n and x ∈ C̃n, we have

(1) l̃(w) =
∑

16i<j62n+1

|⌊ (j)w−(i)w
2n+1 ⌋| =

∑2n+1
k=1 mk(w);

(2) l(x) = 1
2 (l̃(x) −m0(x) +mn(x)).
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Let w ∈ C̃n. We see that w is uniquely determined by the n-tuple ((1)w, (2)w, · · · , (n)w).

Then w can be identified with the n-tuple ((1)w, (2)w, · · · , (n)w) and we can denote the latter

simple by [(1)w, (2)w, · · · , (n)w].

Lemma 2.2 Let w = [a1, a2, · · · , an] and w′ = tiw = [a′1, a
′
2, · · · , a

′
n] in C̃n with i ∈

[0, n]. For any j ∈ [n]

(1) In the case i = 0, a′j =

{
−aj , if j = 1,

aj , if j ∈ [2, n].

(2) In the case i ∈ [n− 1], a′j =





aj+1, if j = i,

aj−1, if j = i+ 1,

aj , otherwise.

(3) In the case i = n, a′j =

{
āj , if j = n,

aj , if j ∈ [n− 1].

Lemma 2.3 Let w = [a1, a2, · · · , an] and w′′ = wti = [a′′1 , a
′′
2 , · · · , a

′′
n] in C̃n with i ∈ [0, n].

For any j ∈ [n]

(1) In the case i = 0, a′′j =





aj + 2, if 〈aj〉 = 2n,

aj − 2, if 〈aj〉 = 1,

aj , otherwise.

(2) In the case i ∈ [n], a′′j =





aj + 1, if 〈aj〉 ∈ {i+ 1, i},

aj − 1, if 〈aj〉 ∈ {i+ 1, ī},

aj , otherwise.

For any i ∈ [0, 2n]. Let D̃R(i) be the set of all w ∈ Ã2n with |{si, si+1} ∩ R̃(w)| = 1.

For any w ∈ D̃R(i), we see that there is exactly one element (denote by w∗) of {wsi, wsi+1} in

D̃R(i). The transformation from w to w∗ in D̃R(i) is called a right {si, si+1}-star operation

(or a right star operation in short) on w. Similarly. We can define a left star operation on

w ∈ D̃R(i). In the present paper, when we mention a right star operation (resp., a left star

operation) on some w ∈ C̃n, we always mean that w is regarded as an element of Ã2n. We

make such a convention once and forever.

For any w ∈ C̃n. Let M(w) be the set of all x ∈ C̃n satisfying that there exists a sequence

x0 = w, x1, · · · , xr = x in C̃n with r > 0 satisfying that for any i ∈ [r], x−1
i xi−1 ∈ S and xi can

be obtained from xi−1 by one or two right star operations.

Let w ∈ C̃n. We can define a graph M(w) by the following requirements:

(i) The vertex set of the graph M(w) is M(w), each vertex x ∈M(w) with label R(x);

(ii) Let x, y in M(w). We draw a solid edge from x to y if x−1y ∈ S and x can be obtained

from y by one or two right star operations.

A path in M(w) is, by definition, a sequence x0, x1, · · · , xr in M(w) with r > 0 such that

xi−1 and xi are joined by a solid edge for any i ∈ [r]. Let x, y ∈ C̃n. x, y are called have

the same generalized τ -invariants if for any path x = x0, x1, · · · , xr in M(x), there exists
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a corresponding path y = y0, y1, · · · , yr in M(y) with R(xi) = R(yi) for any i ∈ [r] and the

condition still holds if the roles of x and y are interchanged. The graph M(w) can be used in

proving that two elements of C̃n have the different generalized τ -invariants (see [2]). Let x, y

in C̃n. We draw a dashed edge from x to y if M(x) ∩M(y) = ∅ and x−1y ∈ S.

For example. In Fig. 1, the vertex [5, 4, 6] with label {t2, t3}, the vertex [6, 4, 5] with label

{t1, t3} and the vertex [8, 4, 5] with label {t0, t3}. The notion 32 denotes the set {t2, t3} and

the notion 32 31 denotes two vertices [5, 4, 6] and [6, 4, 5] are joined by a solid edge. There

is a dashed edge joined the vertices [6, 4, 5] and [8, 4, 5] since [6, 4, 5] = [8, 4, 5]t0 andM([8, 4, 5])∩

M([6, 4, 5]) = ∅. We see that no two elements in Fig. 2 have the same generalized τ -invariants.

Lemma 2.4(see [1, Lemma 16.14]) Let x, y in C̃n.

(1) x∼
L
y (resp., x∼

R
y) in C̃n if and only if x∼

L
y (resp., x∼

R
y) in Ã2n;

(2) x6
L
y (resp., x∼

L
y) implies R(x) ⊇ R(y) (resp., R(x) = R(y));

(3) x6
R
y (resp., x∼

R
y) implies L(x) ⊇ L(y) (resp., L(x) = L(y)).

Suppose that E is a non-empty subset of a Coxeter group W . E is called left-connected

(resp., right-connected) if for any x, y in E, there exists a sequence x = x0, x1, · · · , xr = y in E

with xi−1x
−1
i ∈ S (resp., x−1

i xi−1 ∈ S) for any i ∈ [r] and called two-sided-connected if for any

x, y in E, there exists a sequence x = x0, x1, · · · , xr = y in E satisfying that either xi−1x
−1
i ∈ S

or x−1
i xi−1 ∈ S for any i ∈ [r]. Let F be a non-empty subset of E. We call F a left-connected

component of E if F is the maximal left-connected subset of E.

Lemma 2.5(see [2, Lemma 2.18]) (1) Any left-connected (resp., right-connected, two-

sided-connected) set of ψ−1(λ) is in a left (resp., right, two-sided) cell of Ã2n;

(2) Any left-connected (resp., right-connected, two-sided-connected) set of Eλ is in a left

(resp., right, two-sided) cell of C̃n;

(3) The set Eλ is either empty or a union of some two-sided cells of C̃n.

Lemma 2.6(see [2, Corollary 2.19]) (1) Let x, y in ψ−1(λ) with λ ∈ Λ2n+1. If l̃(y) =

l̃(x) + l̃(yx−1) (resp., l̃(y) = l̃(x) + l̃(x−1y)), then x and y are in the same left-connected (resp.,

right-connected) component of ψ−1(λ) and hence x∼
L
y (resp., x∼

R
y).

(2) Let x, y in Eλ with λ ∈ Λ2n+1. If l(y) = l(x) + l(yx−1) (resp., l(y) = l(x) + l(x−1y)),

then x and y are in the same left-connected (resp., right-connected) component of Eλ and hence

x∼
L
y (resp., x∼

R
y).

3 Partial order �w on [2n+1] determined by w∈C̃n

Two technical tools from Shi in [2, Section 3] will be introduced in this section. One is

used in proving the left-connectedness of a left cell of C̃n (see Theorem 3.2). The other is used

in checking whether two elements of C̃n are in the same left cell (see Lemma 3.3).

Lemma 3.1(see [7, Lemma 3.2]) Fix w ∈ C̃n.

(i) Let i 6= j in [2n], then j ≺w k if and only if k̄ ≺w j̄;

Suppose that j 6= k in [2n] are both w-wild heads and i ∈ [2n] is w-tame head, we have

(ii) j̄ ≺w k if and only if j, k̄ are w-comparable if and only if j, k are w-comparable;
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(iii) i, k are w-uncomparable if and only if i 6= k;

(iv) j, i, j̄ forms a w-chain if and only if i, ī are both w-comparable with j;

(v) j, k, j̄, k̄ forms a w-chain if and only if j, k are w-comparable;

(vi) If (j)w > 2n+ 1, we have j̄ ≺w 2n+ 1 ≺w j. Suppose that (j)w < 2n+ 1, then j, j̄

are both w-uncomparable with 2n+ 1;

(vii) i, ī are both w-uncomparable with 2n+ 1.

Theorem 3.2(see [7, 3.3]) For any k ∈ Z, let t′k = t〈k〉 if 〈k〉 ∈ [n], t′k = t〈k〉−1 if

〈k〉 ∈ [n + 1, 2n] and t′k = 1 if otherwise. Let ti,j = t′i+j−1 · · · t
′
i+1t

′
i for any i ∈ Z and j ∈ N∗.

Suppose that x ∈ C̃n and i ∈ Z satisfy (i)x − 2n− 1 > (j)x for any j ∈ [i+ 1, i+ a] with some

a ∈ [2n]. Let x′ = ti,ax, we have l(x′) = l(x) − l(ti,a) and ψ(x) = ψ(x′). In addition, suppose

that (i)x−2n−1 > (j)x for any j ∈ [i+1, i+2n]. Let x′′ = ti,2n+1, we have l(x′′) = l(x)−2n−1

and ψ(x) = ψ(x′′). Moreover, for any m ∈ Z, we have

(m)x′′ =





(m)x− 2n− 1, if 〈m〉 = 〈i〉,

(m)x+ 2n+ 1, if 〈m〉 = 〈̄i〉,

(m)x, otherwise.

Fix w ∈ C̃n. Let E1 = {i1, i2, · · · , ia} and E2 = {j1, j2, · · · , jb} with a ∈ N∗, b ∈ N and

a+ b = n be two subsets of [2n] such that:

(i) i1 < i2 < · · · < ia and j1 < j2 < · · · < jb;

(ii) The integers of E1 ∪E2 are pairwise not 2n-dual;

(iii) (̄i)w < (i)w for any i ∈ E1 ∪ E2;

(iv) There exists some l ∈ N∗ such that (i)w − (j)w > l(2n + 1) for any i ∈ E1 and

j ∈ E2 ∪ {2n+ 1}.

By repeatedly left multiplying various elements of the form ti,j on w, we can get some

w′ ∈ C̃n such that there exist some 1 6 k1 < k2 < · · · < kb 6 2b satisfying:

(1) l(w′) = l(w) − l(ww′−1);

(2) If b > 0, then [2b] = {k1, k2, · · · , kb, 2b+ 1− k1, 2b+ 1− k2, · · · , 2b+ 1− kb}. The map

φ : {j1, j2, · · · , jb, j̄1, j̄2, · · · , j̄b} −→ [2b] defined by φ(jm) = km and φ(j̄m) = 2b + 1 − km for

any m ∈ [b] is an order-preserving bijection;

(3) There exists some l′ > l with (p)w′ = (ip)w − l′(2n + 1) and (a + kq)w
′ = (jq)w for

any p ∈ [a] and q ∈ [b];

(4) (̄i)w′ < (i)w′ for any i ∈ [a] ∪ {a+ km|m ∈ [b]};

(5) 0 < min{(i)w′ − (a+ km)w′|i ∈ [a],m ∈ [b]} < 2n+ 1 if b > 0;

(6) w′, w with ψ(w′) = ψ(w) are in the same left-connected component of Eλ.

An r-tuple (a1, a2, · · · , ar) with a1, a2, · · · , ar in N∗ is called a composition of positive

integer n with rank r > 1 if a1 +a2 + · · ·+ar = n. Let Λ̃n be the set of all compositions of n. A

generalized tabloid of rank n is an r-tuple T = (T1, T2, · · · , Tr) satisfying that [n] is a disjoint

union of its non-empty subsets T1, T2, · · · , Tr. Let C2n+1 be the set of all generalized tabloids of

rank 2n+ 1. Let T ′ = (T ′
1, T

′
2, · · · , T

′
r) and T ′′ = (T ′′

1 , T
′′
2 , · · · , T

′′
t ) in C2n+1. We write T ′ = T ′′

if r = t and T ′
i = T ′′

i for any i ∈ [r]. For any T ∈ C2n+1, let ξ(T ) = (|T1|, |T2|, · · · , |Tr|) ∈
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Λ̃2n+1 and ζ(T ) = (|Ti1 |, |Ti2 |, · · · , |Tir
|) ∈ Λ2n+1, where the integer sequence i1, i2, · · · , ir is a

permutation of 1, 2, · · · , r with |Ti1 | > |Ti2 | > · · · > |Tir
|. We see by [1] that ξ : C2n+1 −→ Λ̃2n+1

and ζ : Λ̃2n+1 −→ Λ2n+1 are both surjective maps. Let Ω be the set of all w ∈ Ã2n such that

there exists a generalized tabloid T = (T1, T2, · · · , Tr) in C2n+1 satisfying that a ≺w b for any

a ∈ Ti and b ∈ Tj with i < j in [r] and that any a 6= b in Ti are w-uncomparable with i ∈ [r].

We see that T is entirely determined by the element w ∈ Ω, then the generalized tabloid T can

be denoted by T (w). The map T : Ω −→ C2n+1 is surjective by a result in [1].

Lemma 3.3(see [5, Lemma 19.4.6]) Let w,w′ in Ω with ξ(T (w)) = ξ(T (w′)). Then

w∼
L
w′ in Ã2n if and only if T (w) = T (w′).

4 The main results

We give the description for all the cells of the specific weighted Coxeter group (C̃3, l̃6) in

the present section (see Theorem 4.1). Let λ ∈ Λ7, denote by n(λ) the number of left cells of

C̃3 in Eλ. Suppose that Eλ is a union of two two-sided cells E1
λ and E2

λ of C̃3. Denote by n1(λ)

(resp., n2(λ)) the number of left cells of C̃3 in E1
λ (resp., E2

λ). The main results are as follows:

Theorem 4.1 In the weighted Coxeter group (C̃3, l̃6), let λ ∈ Λ7.

(1) The set Eλ forms a single two-sided cell of C̃3 if λ ∈ {7,61,52,512,43,421,413,321,

322,314,231,2213,215,17};

(2) The set Eλ is a union of two two-sided cells of C̃3 if λ = 3212;

(3) The set Eλ is infinite if λ ∈ {7,61,52,512,43,421,413,321,322,314};

(4) The set Eλ is finite if λ ∈ {3212,231,2213,215,17};

(5) The numbers n(λ) for all λ ∈ Λ7 are listed in the following Tab 1, where n1(3212) = 4

and n2(3212) = 1;

(6) Each left cell of C̃3 is left-connected;

(7) Each two-sided cell of C̃3 is two-sided-connected.

Tab. 1 The numbers n(λ) for all λ ∈ Λ7

λ 7 61 52 51
2

43 421 41
3

3
2
1 32

2
321

2
31

4
2
3
1 2

2
1
3

21
5

n(λ) 48 24 24 24 12 12 12 12 8 5 6 3 3 1

Theorem 4.1 will be proved in section 5 by case-by-case argument. Let ∆ := {421,321,

3212}. For any λ ∈ Λ7, the set Eλ with λ 6∈ ∆ has been described in [7-11]. We need only to

consider the sets E421, E321 and E3212 .

Let λ ∈ ∆. We will find a subset Fλ of Eλ such that the set Fλ has a non-empty intersection

with each left-connected component of Eλ (by Theorem 3.2 and various left star operations)

and that no two elements in Fλ are in the same left cell of C̃3 (by Lemma 2.4 and Lemma 3.3).

Then by Lemma 2.5 and Lemma 3.3 we see that the set Fλ can be seen as a representative set

for the left cells of C̃3 in Eλ. Then the number n(λ) is just the cardinal of the set Fλ. We

usually prove that the set Eλ forms a single two-sided cell of C̃3 by proving that the set Eλ is

two-sided-connected. Lemma 1.1 will be used in proving that Eλ is a union of two two-sided

cells of C̃3.



34 uÀ���ÆÆ�(g,�Æ�) 2016 c

5 The proof of Theorem 4.1

Theorem 4.1 will be proved by case-by-case argument in the following part of this section

(see Proposition 5.3, Proposition 5.6 and Proposition 5.10).

Case 1 The set E421

By Lemma 3.1 we see that for any w ∈ C̃3, w ∈ E421 if and only if w satisfies one of the

following conditions (a)-(c):

(a) There exist some pairwise not 6-dual i, j, k in [6] with i, j are both w-tame heads and

k is w-wild head, satisfying k̄ ≺w i ≺w j ≺w k.

(b) There exist some pairwise not 6-dual i, j, k in [6] with i is w-tame head and j, k are

both w-wild heads, satisfying 3 < (j)w < 7 and either j̄ 6≺w i ≺w j ≺w k or j̄ 6≺w ī ≺w j ≺w k.

(c) There exist some pairwise not 6-dual i, j, k in [6] with i, j, k are all w-wild heads,

satisfying:

(c1) j ≺w k but i, j, k is not a w-chain;

(c2) 3 < (i)w < 7 and 3 < (j)w < 7;

(c3) Either j 6≺w i or 7 6≺w k.

Let E1
421

(resp., E4
421

) be the set of all w ∈ E421 satisfying the condition (a) (resp.,

condition (c)). Let E2
421

(resp., E3
421

) be the set of all w ∈ E421 satisfying the condition (b)

with j̄ 6≺w i ≺w j (resp., j̄ 6≺w ī ≺w j). We have E421 = E1
421

∪ E2
421

∪ E3
421

∪ E4
421

.

Proposition 5.1 The set E421 is infinite.

Proof. The result follows from the fact that {w|w = [6 + 7p, 3, 2], p ∈ N} ⊂ E421.

Lemma 5.2 There exists a subset F421 of E421 such that each left-connected component

of E421 contains some w ∈ F421.

Proof. We need only to find a subset F421 of E421 such that for any w′ ∈ E421, there exists

some w ∈ F421 such that w′, w are in the same left-connected component of E421.

(i) Let F ′
421

be the set of all w ∈ E421 satisfying the following condition:

(a′) 3 < (5)w < (3)w < 7 and (3)w < (1)w < (3)w + 7.

We see from Theorem 3.2 that by repeatedly left multiplying various elements with the

form ti,j on any w′ ∈ E1
421

∪ E2
421

, we can get some w ∈ F ′
421

such that w′, w are in the same

left-connected component of E421. One can check that

F ′
421

= {[6, 3, 5], [8, 3, 5], [9, 3, 6], [10, 2, 6], [11, 2, 6], [12, 3, 6]}.

(ii) Let F ′′
421

be the set of all w ∈ E421 satisfying the following condition:

(a′′) 3 < (2)w < (3)w < 7 and (2)w < (1)w < (2)w + 7.

Similarly. For any w′ ∈ E3
421

∪E4
421

, we can get some w ∈ F ′′
421

such that w′, w are in the

same left-connected component of E421. We have

F ′′
421

= {[5, 4, 6], [6, 4, 5], [8, 4, 5], [9, 4, 6], [10, 5, 6], [11, 5, 6]}.

Let F421 = F ′
421

∪ F ′′
421

. The result is proved.
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Proposition 5.3 (1) The infinite set E421 is two-sided-connected, which forms a single

two-sided cell of C̃3;

(2) The set E421 contains 12 left cells of C̃3, each of which is left-connected.

Proof. Let x1 = [9, 4, 6], x2 = [8, 4, 5], x3 = [6, 4, 5] and x4 = [10, 2, 6]. We see that F421 =

M(x1) ∪M(x2) ∪M(x3) ∪M(x4) (see Fig. 1). It implies by x2 = x1t1 = x3t0 and [9, 3, 6] =

x4t2 ∈M(x2) that the set F421 is right-connected.

Fig. 1 The right-connectedness of the set F421

We see from Fig. 1 that no two elements in F421 have the same generalized tabloids. The

result follows from Lemma 2.5, Lemma 3.3, Proposition 5.1 and Lemma 5.2.

Case 2 The set E321

Let w ∈ C̃3. We see from Lemma 3.1 that w ∈ E321 if and only if w satisfies the following

condition (a):

(a) There exist some pairwise not 6-dual i, j, k in [6] with j < k and i is w-tame head,

satisfying at least one of the following conditions:

(a1) j̄ ≺w i ≺w k and 0 < (j)w < (k)w < 7;

(a2) j̄ ≺w i ≺w j and 0 < (j)w < 7 < (k)w < (j)w + 7;

(a3) j̄ ≺w i ≺w k and 0 < (j)w < 7 < (k)w < (j)w + 7;

(a4) 7 < (j)w < (k)w < (j)w + 7.

Let E1
321

(resp., E2
321

, E3
321

, E4
321

) be the subset of E321, elements of which satisfy

condition (a1) (resp., condition (a2), condition (a3), condition (a4)) of condition (a). We have

E321 = E1
321

∪ E2
321

∪ E3
321

∪ E4
321

.

Proposition 5.4 The set E321 is infinite.

Proof. The result follows from the fact that {[8 + 7p, 9 + 7p, 3]|p ∈ N} ⊂ E321.

Lemma 5.5 There exists a subset F321 of E321 such that each left-connected component

of E321 contains some w ∈ F321.

Proof. We will find a subset F321 of E321 satisfying the requirement above.

(i) Let F 1
321

be the set of all w ∈ E1
321

satisfying the following condition:

(b1) 0 < (5)w < (6)w < (4)w < (2)w < 7 and (4)w > 3.

By applying various left star operations on any w′ ∈ E1
321

, we can get some w ∈ F 1
321

such

that w′, w are in the same left-connected component of E321.

(ii) Let F 2
321

be the set of all w ∈ E2
321

satisfying the following condition:

(b2) 0 < (6)w < (4)w < (1)w < 7 < (2)w < (1)w + 7 and (4)w > 3.

Similarly, for any w′ ∈ E2
321

, we can get some element w ∈ F 2
321

such that w′, w are in the

same left-connected component of E321.
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(iii) Let F 3
321

be the set of all w ∈ E3
321

satisfying the following condition:

(b3) 0 < (6)w < (4)w < 7 < (2)w < (1)w + 7 and (4)w > 3.

One can check that for any w′ ∈ E3
321

, there exists some w ∈ F 3
321

such that w′ and w are

in the same left-connected component of E321. We have

F 3
321

= {[3, 9, 1], [4, 9, 1], [5, 11, 1], [5, 10, 1], [3, 8, 2], [4, 8, 2],

[5, 8, 3], [6, 9, 3], [6, 10, 2], [6, 11, 2], [6, 12, 3]}.

(iv) Let F ′′4
321

be the subset of E4
321

, the element of which satisfies the following condition:

(b′′4) 3 < (4)w < 7 < (1)w < 14 and (1)w < (2)w < (1)w + 7.

We see from Theorem 3.2 that for any w′ ∈ E4
321

, there exists some w ∈ F ′′4
321

such that

w,w′ are in the same left-connected component of E321.

Let F ′4
321

be the subset of F ′′4
321

, elements of which satisfy the following condition:

(b′4) 3 < (4)w < 7 < (1)w < (2)w < 14.

Let w′ ∈ F ′′4
321

, we have (1)w′ < (2)w′ < (1)w′ + 7 and 7 < (1)w′ < 14. If (2)w′ < 14,

we have w′ ∈ F ′4
321

. Suppose that (2)w′ > 14, we see that 7 < (2)w′ − 7 < (1)w′ < 14. Let

w = t0t1t2t3t2w
′, we have w ∈ F ′4

321
and l(w′) = l(t0t1t2t3t2) + l(w). Then w′ and w are in the

same left-connected component of E321 by Lemma 2.6.

Let F 4
321

be the set of all w ∈ F ′4
321

satisfying the following condition:

(b4) 3 < (4)w < 7 < (1)w < (2)w < (3)w + 7.

Let w′ ∈ F ′4
321

, we have 0 < (2)w′ − 7 < 7 and 0 < (3)w′ < 4. If (2)w′ − 7 < (3)w′, then

w′ ∈ F 4
321

. Suppose that (2)w′ − 7 > (3)w′. Let w = t0t1t2t3t2w
′, we see that w ∈ F 3

321
and w′

and w are in the same left-connected component of E321. By 0 < (1)w−7 < (2)w−7 < (3)w < 4

we have F 4
321

= {[8, 9, 3]}.

(v) For any w′ ∈ F 1
321

, let w = t2t3t2t1t0w
′, we have w ∈ F 3

321
. Then w′ and w are in the

same left-connected component of E321 by Lemma 2.6. We see by the conditions (b2) and (b3)

that F 2
321

⊆ F 3
321

. Let F321 = F 3
321

∪ {[8, 9, 3]}, the result is proved.

Proposition 5.6 (1) The infinite set E321 is two-sided-connected, which forms a single

two-sided cell of C̃3.

(2) The set E321 contains 12 left cells of C̃3, each of which is left-connected.

Proof. Let x1 = [5, 8, 3], x2 = [4, 8, 2], x3 = [6, 10, 2] and x4 = [4, 9, 1]. We have F 3
321

= M(x1)∪

M(x2) ∪M(x3) ∪M(x4) (see Fig. 2). We see from x2 = x1t2 = x4t1, [5, 10, 1] = x3t1 ∈M(x4)

and [6, 9, 3] = [8, 9, 3]t0 ∈M(x1) that the set F321 is right-connected.

Fig. 2 The right-connectedness of the set F321
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By Fig. 2 we see that no two elements in F321 have the same generalized tabloids. The

result follows from Lemma 2.5, Lemma 3.3, Proposition 5.4 and Lemma 5.5.

Case 3 The set E3212

Let w ∈ C̃3. We see that w ∈ E3212 if and only if w satisfies the following condition (a):

(a) There exist some pairwise not 6-dual i, j, k in [6] with i is w-tame head and j and k

are both w-wild heads, satisfying:

(a1) (j)w > 7 and j, k are w-uncomparable;

(a2) There exactly one of the following conditions holds:

(a21) The integers of {i, ī, k, 7} are pairwise w-uncomparable;

(a22) (k)w > 7 and the integers of {i, ī, j, k} are pairwise w-uncomparable.

Let E1
3212 (resp., E2

3212) be the set of all w ∈ E3212 satisfying the condition (a21) (resp.,

condition (a22)) of the condition (a). Then we have E3212 = E1
3212 ∪ E2

3212 .

Proposition 5.7 The set E3212 is finite.

Proof. For any w ∈ E3212 and t ∈ [6], we always have −4 < (t)w < 21.

Lemma 5.8 (E1
3212)

−1
= E1

3212 and (E2
3212)

−1
= E2

3212.

Proof. By closely observing the matrix forms of the elements in E3212 , we see that if w ∈ E3212

satisfying the condition (a21) (resp., the condition (a22)) of the condition (a), so does w−1.

Lemma 5.9 There exists a subset F 1
3212 (resp.,F 2

3212) of E1
3212 (resp.,E2

3212) such that

each left-connected component of E1
3212 (resp.,E2

3212) contains some w in F 1
3212 (resp.,F 2

3212).

Proof. (i) Let F 1
3212 be the set of all w ∈ E1

3212 satisfying the following condition:

(b1) 3 < (3)w < (5)w < 7 < (6)w < (3)w + 7.

By applying various left star operations on any w′ ∈ E1
3212 , we can get some w ∈ F 1

3212

such that w′ and w are in the same left-connected component of E3212 . Then we have

F 1
3212 = {[−1, 2, 4], [−2, 1, 4], [−3, 1, 5], [−4, 1, 5]}.

(ii) Let F 2
3212 be the set of all w ∈ E2

3212 satisfying the following condition:

(b2) 3 < (4)w < 7 < (5)w < (6)w < (3)w + 7.

For any w′ ∈ E2
3212 , we see that there exists some w ∈ F 2

3212 in a left-connected component

of E3212 containing w′. We see from 0 < (5)w − 7 < (6)w − 7 < (3)w < 4 that F 2
3212 =

{[−2,−1, 3]}.

Proposition 5.10 (1) The finite set E3212 is a union of two two-sided cells E1
3212 and

E2
3212 of C̃3, each of which is two-sided-connected;

(2) The set E1
3212 contains 4 left cells of C̃3, each of which is left-connected;

(3) The set E2
3212 is left-connected, which forms a single left cell of C̃3.

Proof. It implies by F 1
3212 = M([−2, 1, 4]) ∪ {[−1, 2, 4]} and [−2, 1, 4] = [−1, 2, 4]t1 that the

set F 1
3212 is right-connected.

By R([−2,−1, 3]) = {t0} and Fig. 3 we see that no two elements in F3212 have the same

generalized tabloids. The result follows from Lemma 1.1, Lemma 2.5, Lemma 3.3, Proposition

5.7 and Lemmas 5.8—5.9.
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Fig. 3 The right-connectedness of the set F 1

3212

So far we have proved all the assertions in Theorem 4.1.
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