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Abstract: A lot of empirical studies have demonstrated that Java software system is a

kind of artificial complex network and its in-degree distribution obeys the power law, while

out-degree distribution is lognormal. However, most experiment objects in these studies are

Java development tools, such as JDK, log4j and Tomcat, and the type of data analyzed in

dependence graph is limited, because they only consider some class dependence relationships

and omit certain useful data types, like member variables and local variables. In this paper,

we all useful dependence relationships between entities or modules on both class and function

levels, and we further propose a novel method to transform a system network into a weighted

directed graph. Comprehensive experiment results show that the in- and out-degree of 10

types of Java application systems mostly fit the power law distributions, and our proposed

method to detect the scale-free feature of a weighted and directed network is effective in

analyzing Java application systems.
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0 Introduction

The study of software systems using complex network analysis has become an

enthusiasm[1-6], because the theory of scale-free feature behind complex networks can be a

useful approach to the analysis of concrete software systems. Modeling software systems as

networks is a good way to investigate the internal structure, and it is effective to excavate the

collaboration or dependence relationships between modules or entities, which are the building

blocks of systems. Such method would help developers better understand the structure of large-

scale software systems, especially make it easier for them to do thorough study and extension

on open-source systems.

Recently, taking advantage of power-law distribution as one scale-free feature to study

object-oriented (OO) software systems has been greatly conducted. Concretely, for an OO

software system, we usually treat it as a directed graph, where the node represents an entity (e.g,

package, class or function) and the directed edge represents the correlation between two entities.

Previous studies[3-4,7-14] analyzed systems with the distributions of in-degree and out-degree on

the class dependence graph, and detected the scale-free feature according to whether the degree

distribution follows power law. However, these previous studies have two limits: First, they

only apply analysis on professional systems. For example, the study[7] examines Linux open-

source systems and Apache web servers, and researches[10,11] study Java development tools.

But, some normal application systems, which are developed for specified uses, are still valuable

and significant, because they may have more entities holding closely dependence relationships.

Second, those previous studies only investigate the system at package or class level, which is

coarse-grained and holds limit kinds of relationships (3 common relationships), as a result, it is

not enough for us to understand a system thoroughly.

In this paper, we conduct comprehensive analysis on both class and function levels in 10

types of Java application systems in Tab. 1. The degree distribution is investigated on a class

dependence graph that is built up by 5 relationships, and a function dependence graph. We

propose a novel method to extract all kinds of relationships between entities of a system, and

further transform the system into a weighted directed graph by a modeling method. We then

analyze the distributions of in- and out-degree of each graph to see whether they obey power-law

distributions. Experimental results show that the in- and out-degree of these Java application

systems mostly fit the power-law distributions, which indicates normal Java application systems

also belong to the class of scale-free networks and our proposed method is effective in analyzing

software systems using complex network theory.

The main purpose of our study is to thoroughly analyze the structure of Java application
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systems and help developers to approve the system performance with complex network theory.

Whether the networks transformed from these systems obey power law can tell us the pros and

cons of them, which lack regulation due to open source management and development. If the

system obey power law, it has robustness and fragility, and we can find the most influential

node to control its bug propagation. If not, the system structure may need to be changed or

adjusted according to our analysis results.

The rest of the paper is organized as follows. In section 1, we introduce some preliminary

knowledge, including the definitions of dependence relationship, the class and function depen-

dence graphs, and a method to do relationship extraction. We explain a complete analysis

method on system network and propose a promising weighting mechanism to relationships in

section 2. Section 3 shows the experimental results and analysis. At last we make a conclusion

in section 4.

Tab. 1 CDG and FDG networks for 10 types of Java application systems
Network Description |V | |E| |Vf | |Ef |

GISToolkit GIS system 470 2 467 468 1 488
OpenGTS GIS system 357 2 474 67 04 7 122

OpenJUMP GIS system 1 369 8 429 6 062 8 815
dotCMS CMS system 2 412 13 801 2 382 6 680
infoGlue CMS system 1 371 6 891 1 359 3 375
OpenCms CMS system 1 572 12 288 1 558 6 452

eConf LMS system 61 169 134 103
a-LMS LMS system 440 1 861 1 988 1 759
OLMS LMS system 130 358 141 97

JSPWiki Wiki system 489 2 056 1 843 1 927
JAMWiki Wiki system 150 744 762 770
FitNesse Wiki system 672 2 789 1 957 1 764
jforum Forum system 355 1 587 1 290 1 423
jGossip Forum system 263 919 507 611
Yazd Forum system 218 885 891 793

jPortlet Portal system 133 555 318 273
OpenPortal Portal system 84 151 87 92

Pluto Portal system 351 1 189 821 706
GatorMail WebMail system 110 324 269 197
OlivaMail WebMail system 60 247 191 215
yawebmail WebMail system 76 196 157 139
FocusSNS Blog and SNS system 299 913 283 491

Pebble Blog and SNS system 655 3 003 2 295 2 875
Roller Blog and SNS system 513 2 843 2 536 3 314

ITracker Bug tracking system 386 1 835 382 736
BugRat Bug tracking system 74 383 364 513
Scarab Bug tracking system 575 2 449 5 947 5 332

Hipergate ERP and CRM system 643 2 517 3 181 3 366
SourceTap ERP and CRM system 169 737 652 636

OpenCustomer ERP and CRM system 398 2 019 1 151 1 392

1 Preliminaries

In this section, we mainly introduce the definitions of class dependence graph and function

dependence graph, then we propose a method to extract kinds of relationships between entities

in Java application systems.

1.1 Class Dependence Graph and Function Dependence Graph

Java is a kind of OO development language, and class is a basic unit consisting of member

variables and member functions. In a program, there are 5 reference and invocation relationships
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between classes, which are inheritance and implementation, aggregation, parameter, signature

and invocation. These dependence relationships between two classes can be used to build

up a class dependence graph (abbreviated to CDG), which is defined as a directed network

G = (V, E), where V is the set of nodes and E is the set of edges[10]. A node v ∈ V is a class

or an interface. A directed edge eij = (vi, vj) (eij ∈ E) connected by node vi and vj represents

one of the following five relationships[15]:

• R1-Inheritance and implementation: vi extends or implements vj ;

• R2-Aggregation: vj is the data type of fields (member variables) or attributes in vi;

• R3-Parameter: vj is theparametertype, returntype orexception type ofmember functions

in vi;

• R4-Signature: vj is the type of local member variables in vi;

• R5-Invocation: vj is the type of invoked methods inside the member functions in vi;

Furthermore, function is a smaller granularity unit in application systems. According to

the basis of UML theory, the function calls along with their orders play an important role in

the sequence diagram[16], since we can know the information and data flow of a system from

them. Therefore, we further build up the function dependence graph (abbreviated to FDG)

that describe the dependence relationships between two functions in a system.

FDG network is also defined as a directed network Gf = (Vf , Ef ), where Vf is the set

of function nodes and Ef is the set of edges between functions. There is only one dependence

relationship R6 between two functions, and the directed edge is denoted by efij
= (vfi

, vfj
)

(efij
∈ Ef , vfi

∈ Vf , vfj
∈ Vf ). The function dependence relationship is defined as[15]:

• R6-Invoke: vfj
is the type of invoked method in vfi

;

For example, based on the definitions of CDG and FDG, we can get all the relationships

from the following Java code as:

public class A extends B implements C{

HashSet <B> va=new HashSet <B>( );

public static ArrayList <B> fa(C vb, D vc, ArrayList <E> vd) throws F{

F ve;

F vf=new F( );

vf.fb( );

vf.fc( );}}

R1: eAB = (vA, vB), eAC = (vA, vC);

R2: eAB = (vA, vB);

R3: eAB = (vA, vB), eAC = (vA, vC), eAD = (vA, vD), eAE = (vA, vE), eAF = (vA, vF );

R4: eAF = (vA, vF );

R5: eAF = (vA, vF ), eAF = (vA, vF ), eAF = (vA, vF );

R6: efab = (vfa, vfb), efac = (vfa, vfc);

1.2 Extraction of Dependence Relationships from Systems

To build up complete CDG and FDG networks, we need to extract all the six dependence

relationships from a Java application system. Based on the source code of a system, only the

former three dependence relationships (i.e. R1, R2, R3) could be extracted[10]. To get the left

relationships, which are hidden within method bodies, we propose a byte code based method,
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because Java application systems are typically compiled into byte codes (stored in a .class file

shown in Fig. 1.) and the codes own all the information we want to know[17].

Fig. 1 A sample of Java class binary file

Concretely, we first decode the Java .class file (a binary file) into byte codes, where we can

get a structured description of a class in detail, including the header, a constant pool, access

rights, implemented interfaces, fields, methods and attributes. Therefore, the relationships of

R1, R2 and R3 can be directly extracted from the constant pool, and the relationships of R4

and R5 are now available in the method bodies which are stored in the Local Variable Table

and with keyword Signature. Similarly, the function dependence relationship R6 can be also

identified from the method body in each binary file.

To validate the dependence relationships extracted from byte codes of a system, we use

reflection technique[18] to extract the relationships of R1, R2 and R3, and compare the results

obtained by the two methods. Reflection is a powerful and trustworthy technique to examine

the runtime behavior of applications[8], and thus it provides a way to retrieve methods in a

class[19]. For example, when a program is running, we will know that class v2 is invoked by

class v1 through reflection mechanism. However, signature and invocation relationships (R4,

R5) cannot be identified in this way. Finally, we get the same results of R1, R2 and R3 through

these two methods, and we can draw the conclusion that using our proposed extraction approach

based on byte codes is practicable.

2 Network Analysis on Application Systems

Next, we describe a complete analysis method on the system networks. We first propose

a weighting mechanism to transform a network graph into a weighted directed graph, then we
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evaluate the in- and out- degree to see whether they obey power-law distributions .

For every network graph, we remove the isolated nodes and merge multiple edges between

the same source node and target node into one weighted edge, which stands for the class

dependence relationship or the function dependence relationship. We do the in- and out-degree

analysis separately to illustrate the distribution characteristics of CDG and FDG network. The

node and edge scale of those systems varies from hundreds to thousands in both CDG and FDG

networks shown in Tab. 1. For each type of Java application system, we use three concrete

softwares to do the evaluation.

2.1 A Modeling Method for Class Dependence Graph

Previous studies[7,10,20] only extract three kinds of class dependence relationships (i.e. R1,

R2, R3) when they build up the CDG. However, according to the software engineering theory[16],

the member variables and local variables inside the method body have important positions in a

Java system. As the statistical results in Tab. 2, the invocation number, which represents how

many times the maximum node is called, is the in-degree for each class dependence relationship.

And the values of R4 and R5 are far greater than those of R1 and R2. So we can conclude that

building a weighted and directed CDG network based on 5 relationships model (abbreviated to

5R) instead of 3 relationships model (abbreviated to 3R) is significant and accurate.

Tab. 2 The invocation number of the maximum node in each system
Network R1 R2 R3 R4 R5

GISToolkit 1 20 155 86 54

OpenGTS 3 0 391 335 60

OpenJUMP 1 79 394 64 179

dotCMS 3 0 3900 349 243

infoGlue 4 0 1 850 58 199

OpenCms 0 107 1 894 292 1 162

eConf 0 1 2 5 14

a-LMS 1 0 309 52 2

OLMS 0 0 0 155 9

JSPWiki 1 57 126 52 73

JAMWiki 0 74 2 0 4

FitNesse 2 48 279 103 25

jforum 0 56 55 89 89

jGossip 1 0 105 18 2

Yazd 1 19 39 27 14

jPortlet 4 0 101 1 10

OpenPortal 0 0 8 1 6

Pluto 1 7 56 33 14

GatorMail 0 0 1 0 47

OlivaMail 0 1 1 26 27

yawebmail 1 1 4 0 6

FocusSNS 1 9 31 24 8

Pebble 0 32 86 132 147

Roller 13 0 98 104 0

ITracker 1 2 10 3 94

BugRat 0 0 250 51 101

Scarab 1 27 266 187 45

Hipergate 0 3 151 46 39

SourceTap 0 1 50 45 25

OpenCustomer 0 17 59 100 38
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Formally, we use A(i)(i = 1, 2, 3, 4, 5) to denote a matrix representation for the relationship

Ri, and the element A
(i)
jk is the number of edges that node k points to node j. We suppose

that all these relationships have the same importance in a system, so in this paper we assign

a relationship Ri the weight ci as c1 = 1, c2 = 1, c3 = 1, c4 = 1, c5 = 1. So the weighted CDG

can be represented by a matrix M as follows:

M =

5
∑

i=1

ci × A(i). (1.1)

And for a node j, the in-degree and out-degree can be respectively computed by:

M in
j =

N
∑

k

Mjk, Mout
j =

N
∑

k

Mkj , (1.2)

where N is the number of nodes in graph CDG, and Mjk is the matrix representing the rela-

tionships from node j to k. In contrast, for the out-degree matrix of node j, Mkj represents

the relationships from node k to j.

2.2 Construction of Function Dependence Graph

Function is a smaller entity inside the system than class, we should treat it differently

and build a desperate graph for it to study its structure. Based on the modeling method of

CDG, the FDG network can be constructed by R6, which represents the invocation relationship

between functions. Then we can extract the in-degree and out-degree from the FDG network.

As we can see, Fig. 2 (networks depicted by Gephi) visualizes the CDG and FDG of

the focusns system, the dependence relationships correlated with classes are more complex and

denser than those in function network, which is reasonable in real systems. This phenomenon

may be caused by the reason that the connections between class entities contains the relation-

ships of functions, which means there are fewer dependencies at function level and the degrees

at function level are smaller than those at class level.

Fig. 2 (a) CDG network of focusns; (b) FDG network of focusns

2.3 Evaluation based on Degree Distributions

Studies[1-2] indicate that software systems have different distributions for in- and out-

degree, and the work[7,10] move forward to prove that: the in-degree distribution follows power

law, while the out-degree distribution is lognormal. But, all these studies are concerned about
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Java development tools or other OO language systems. Here we do further study on Java

application systems which have much tighter connections between entities or modules at both

class level and function level.

The distributions of in- and out-degree can be calculated by either cumulative distribution

function (CDF)[21] or probability density function (PDF)[5]. While CLAUSET[21] proves that

in discrete cases, CDF gives more accurate results than what PDF does. In this work, we also

use CDF to compute the probability distribution P (x) = Pr(X > x), where x is a degree that

satisfies x > xmin.

For both CDG and FDG networks, we treat the data sets of in- and out-degree sepa-

rately and take them as discrete cases. Moreover, all the data are integer values and follows a

probability distribution as Eq. (1.3)[21], where x stands for a node degree and α is a constant

parameter.

p(x) = Cx−α. (1.3)

we then use Eq. (1.4) and Eq. (1.5) to calculate the normalizing constant C [21], where Eq. (1.5)

is the Hurwitz zeta function:

C =
x−α

ζ(α, xmin)
, (1.4)

ζ(α, xmin) =

∞
∑

n=0

(n + xmin)−α. (1.5)

At last, we use CDF to compute the distribution P (x) by

P (x) = Pr(X > xmin) =
ζ(α, x)

ζ(α, xmin)
. (1.6)

More specifically, the scaling parameter α is estimated by the discrete maximum likelihood

estimator(MLE) using:

α̂ ≃ 1 + n
[

n
∑

i=1

ln
xi

xmin − 1
2

]−1

. (1.7)

And the lower bound xmin is computed as:

D = max
x>xmin

|S(x) − P (x)|. (1.8)

Here we make use of Kolmogorov-Smirnov(KS) statistic[21] to get the maximum distance D

between S(x) and P (x).

Now we can analyze P (x) of the in- and out- degree to see whether they follow power-law

distributions. However, just using P (x) values is hard to distinguish in-degree or out-degree

follows the power-law distribution from other distributions, like lognormal and exponential.

CLAUSET[21] also proposed a goodness of fit method, which uses p-value, to validate whether

a data set fits the power-law distribution better than others. Concretely, if and only if p > 0.1,

we can get the conclusion that the power-law distribution is more reasonable on a data set.

Tab. 3 shows all the values of α and xmin for each CDG and FDG generated from 10 Java

application systems.
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Tab. 3 Value of α and xmin in all ten types of Java application networks

Network
CDG networks[5R] CDG networks[3R] FDG networks

αin xin
min

αout xout
min

αin xin
min

αout xout
min

αin xin
min

αout xout
min

GISToolkit 2.01 6 4.23 39 1.96 3 2.72 8 1.80 1 3.38 14
OpenGTS 2.01 27 2.08 20 2.02 8 2.26 8 2.50 2 3.84 3

OpenJUMP 2.09 12 4.33 42 2.19 8 3.41 16 2.22 2 4.25 6
dotCMS 1.81 6 2.19 35 2.02 24 1.96 5 3.36 6 2.72 6
infoGlue 1.81 5 2.03 11 1.88 1 2.25 6 1.79 3 2.02 4
OpenCms 1.90 11 2.34 36 1.94 6 2.35 17 1.84 4 2.29 16

eConf 3.03 9 3.56 10 2.70 5 3.38 5 3.10 1 2.82 1
a-LMS 1.96 8 2.17 9 1.65 1 2.19 5 2.80 2 4.75 2
OLMS 1.85 2 2.25 6 2.51 1 2.38 1 2.59 1 4.89 1

JSPWiki 1.61 1 3.31 33 1.91 3 2.30 4 2.80 4 2.70 1
JAMWiki 1.90 10 2.57 23 1.63 1 2.47 13 2.26 2 4.62 2
FitNesse 1.99 6 3.20 18 1.78 1 4.03 16 2.66 2 2.87 1
jforum 2.15 32 3.92 34 1.78 1 2.92 6 2.80 5 5.00 4
jGossip 1.95 4 3.05 6 2.13 1 2.82 4 2.61 1 5.00 4
Yazd 1.87 7 1.96 6 1.86 1 2.26 5 2.30 1 5.00 3

jPortlet 2.35 12 2.32 8 2.12 4 2.63 5 2.40 1 2.61 1
OpenPortal 2.21 2 2.28 2 2.52 2 3.10 3 2.26 1 2.83 2

Pluto 2.47 8 2.66 11 2.41 5 2.48 4 2.92 2 2.67 1
GatorMail 2.00 3 3.00 5 2.10 1 2.45 2 2.68 1 3.49 1
OlivaMail 2.34 10 2.67 7 3.51 4 2.05 1 2.38 1 2.37 1
yawebmail 3.35 9 2.19 3 1.81 1 2.78 4 3.03 2 3.32 2
FocusSNS 1.71 1 2.57 7 1.90 1 5.00 11 2.75 15 4.58 8

Pebble 1.73 1 2.79 14 1.89 3 2.71 3 2.49 5 4.03 3
Roller 1.84 4 2.61 20 1.77 1 2.41 5 2.36 2 4.54 5

ITracker 2.94 83 2.57 15 2.37 18 2.10 2 2.31 1 2.36 3
BugRat 1.42 1 2.56 21 2.05 5 2.77 8 2.13 2 2.10 1
Scarab 2.32 37 2.62 41 2.56 29 2.44 21 2.30 1 4.25 1

Hipergate 2.19 17 2.59 24 2.07 5 2.72 15 2.39 2 3.43 3
SourceTap 1.64 1 2.11 8 1.62 2 2.37 5 2.45 1 2.68 1

OpenCustomer 1.94 4 5.00 27 2.12 3 4.13 10 2.19 1 2.31 1

CDG networks[5R] are modeling networks constructed by our 5 relationship model, and

CDG networks[3R] are relatively built up with 3 relationships (i.e. R1, R2 and R3). FDG

networks are the graphs for function dependencies. As we can see, in CDG networks[5R], αin

varies from 1.42 to 3.35 and αout varies from 1.96 to 5.00. While in CDG networks[3R], αin

ranges in [1.62, 3.51] and αout ranges in [1.96, 5.00]. In FDG networks, the range of αin is from

1.79 to 3.36 and the range of αout is from 2.02 to 5.00. It is obviously that αout usually has

broader and bigger values than αin, which indicates some αout may not follow the power-law

distribution[21]. General speaking, if the network obeys power law, the value of α should locate

in (2,3)[1,10,21]. So we should further detect the distribution of in-degree and out-degree by

p-value of a goodness of fit method.

3 Experimental Result

We implement comprehensive experiments on 10 popular Java application systems††,

which are listed in Tab. 1. Due to the characteristics of Java application systems, the ra-

tio of edges to nodes in them is much higher than that in Java development tools[10,22].

3.1 Results and Discussion

Fig. 3 and Fig. 4 exhibits the in- and out-degree distributions computed on CDG net-

works[5R] and CDG networks[3R]. 5RID and 5ROD stand for the in- and out-degree distribu-

tions computed on the weighted and directed network with the 5 relation model. While 3RID

and 3ROD represent the in- and out-degree distributions with 3 relationships. Fig. 5 shows the

†† http://www.open-open.com/code/.
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function in-degree (abbreviated to FID) and out-degree (abbreviated to FOD) distribution

calculated by our evaluation method.

Fig. 3 In-degree distributions of CDG[3R] and CDG[5R] networks in all 10 types of systems

(a) Blog and SNS systems; (b) ERP and CRM systems; (c) WebMail systems; (d) GIS systems; (e)

Portal systems; (f) CMS systems; (g) Bug tracking systems; (h) LMS systems; (i) Wiki systems; (j)

Forum systems



48 uÀ���ÆÆ�(g,�Æ�) 2017 c

Fig. 4 Out-degree distributions of CDG[3R] and CDG[5R] networks in all 10 types of systems

(a) Blog and SNS systems; (b) ERP and CRM systems; (c) WebMail systems; (d) GIS systems; (e)

Portal systems; (f) CMS systems; (g) Bug tracking systems; (h) LMS systems; (i) Wiki systems; (j)

Forum systems
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Fig. 5 In- and out-degree distributions of FDG networks in all 10 types of systems

(a) Blog and SNS systems; (b) ERP and CRM systems; (c) WebMail systems; (d) GIS systems; (e)

Portal systems; (f) CMS systems; (g) Bug tracking systems; (h) LMS systems; (i) Wiki systems; (j)

Forum systems

From Fig. 3 and Fig. 4, we can see that all the distribution curves are straight lines,
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which indicates the in- and out-degree probably follow power-law distributions[23]. However,

as we talked about before, it is not enough to get this conclusion just by observing the figures,

where the 3RID-line and 5RID-line of the same system substantially parallel to each other.

Correspondingly, the 3ROD-line and 5ROD-line is also like that.

So we further compute the p-values to quantify the plausibility of power-law distribution,

and Tab. 4 shows the p-values of all networks. We can see that the p-values generated on

weighted and directed CDG network[5R] are different from the values generated on CDG net-

works[3R]. Now let’s see these in- and out-degree whose p-values are greater than 0.1, which

means they indeed follow power-law distributions. By contrast, there are more p-valuein values

greater than 0.1 and less p-valueout smaller than 0.1 based on our modeling method (CDG

networks[5R]). For FDG networks, there are only 1/6 of the p-valuein less than 0.1, and 7/15

of p-valueout less than 0.1. Apparently, most of the Java application systems have scale-free

feature not only at class level but also at function level.

Tab. 4 p-values in all ten types of Java application networks

Network
CDG networks[5R] CDG networks[3R] FDG networks

p-valuein p-valueout p-valuein p-valueout p-valuein p-valueout

GISToolkit 0.070 8 0.208 4 0.637 6 0.001 2 0.344 4 0.176 4

OpenGTS 0.641 4 0.011 2 0.352 0 0.813 6 0.543 6 0.027 6

OpenJUMP 0.407 2 0.766 4 0.928 4 0.088 8 0.741 2 0.560 8

dotCMS 0.034 4 0.001 2 0.664 0 0.008 0 0.234 0 0.168 0

infoGlue 0.218 8 0.175 6 0.794 0 0.041 6 0.326 0 0.039 2

OpenCms 0.232 8 0.144 4 0.289 2 0.745 2 0.127 6 0.566 8

eConf 0.476 4 0.756 8 0.477 2 0.199 2 0.339 6 0.832 4

a-LMS 0.004 8 0.205 6 0.004 0 0.258 0 0.558 8 0.035 2

OLMS 0.020 8 0.055 6 0.342 0 0.666 4 0.382 8 0.497 2

JSPWiki 0.000 0 0.593 6 0.595 6 0.027 2 0.342 4 0.000 0

JAMWiki 0.297 6 0.902 8 0.000 4 0.195 2 0.548 8 0.365 6

FitNesse 0.027 6 0.255 2 0.019 2 0.917 6 0.461 6 0.000 0

jforum 0.772 0 0.620 0 0.000 0 0.084 4 0.193 2 0.241 2

jGossip 0.305 2 0.059 6 0.001 6 0.860 8 0.079 6 0.692 8

Yazd 0.495 6 0.060 8 0.053 2 0.302 0 0.014 4 0.208 8

jPortlet 0.458 8 0.017 2 0.714 0 0.529 6 0.003 2 0.171 6

OpenPortal 0.188 0 0.020 0 0.001 6 0.710 8 0.360 8 0.252 4

Pluto 0.437 2 0.872 0 0.632 4 0.368 0 0.326 8 0.000 0

GatorMail 0.467 2 0.818 4 0.016 4 0.620 0 0.442 4 0.144 0

OlivaMail 0.503 2 0.800 4 0.110 8 0.047 6 0.512 0 0.142 0

yawebmail 0.658 0 0.665 6 0.004 8 0.562 0 0.549 2 0.075 2

FocusSNS 0.001 6 0.042 8 0.080 4 0.939 6 0.695 6 0.740 8

Pebble 0.000 0 0.613 6 0.643 2 0.001 6 0.264 0 0.012 4

Roller 0.045 6 0.353 2 0.000 4 0.666 8 0.916 0 0.026 8

ITracker 0.817 2 0.010 4 0.824 4 0.363 6 0.258 4 0.041 6

BugRat 0.005 6 0.463 6 0.228 8 0.772 8 0.436 4 0.000 0

Scarab 0.307 6 0.229 2 0.001 6 0.980 8 0.000 0 0.000 0

Hipergate 0.577 2 0.226 8 0.741 6 0.281 2 0.068 0 0.722 8

SourceTap 0.528 4 0.001 2 0.708 4 0.044 8 0.606 0 0.000 0

OpenCustomer 0.260 8 0.786 8 0.560 8 0.730 0 0.314 4 0.000 0

The comprehensive experiments show that our proposed method and model is appropriate

to analyze the degree distributions and further detect whether a system has the scale-free feature
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of the complex network. If we get a scale-free network from a Java application system, we can

conclude that it has robustness and fragility, which means the system is robust to random

breakdown or fault[24-25] and fragile to malicious attacks. Through the analysis of the in-degree

and out-degree for CDG and FDG networks, we can extract the most important nodes of each

system and the relationships between the entities, which helps us to maintain our system and

debug the errors.

4 Conclusion

In this paper, we conduct comprehensive analysis on both class and function dependence

relationships in 10 types of Java application systems. First, we make use of our proposed method

to transform each system network into weighted class dependence graph (CDG) and function

dependence graph (FDG). We then further analyze the distributions of in- and out-degree of

each graph to see whether they follow power-law distributions. Experimental results show that

the in- and out-degree of these Java application systems mostly fit power-law distributions, and

it indicates that our proposed modeling method is effective and accurate in analyzing degree

distributions and suggests a possible way to assign dependence relationships different weights

to do network analysis in the future work. From the perspective of industrial production, if

the open source system has the power-law nature, which indicates it is robust yet fragile, our

method has great significance to help developers to control the bug propagation and optimize

performance of open source systems like Java application systems.
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