华东师范大学学报(自然科学版) ›› 2025, Vol. 2025 ›› Issue (1): 1-12.doi: 10.3969/j.issn.1000-5641.2025.01.001

• 数学 •    

一类具有负跳的α-稳定过程驱动的种群模型的遍历性

童金英1(), 梁子翼1, 陈文泽1, 张振中1, 赵馨1,2   

  1. 1. 东华大学 数学与统计学院, 上海 201620
    2. 上海人工智能网络系统工程技术研究中心, 上海 201203
  • 收稿日期:2024-01-07 出版日期:2025-01-25 发布日期:2025-01-20
  • 作者简介:童金英, 女, 副教授, 研究方向为马尔可夫过程的遍历性. E-mail: jytong@dhu.edu.cn
  • 基金资助:
    国家自然科学基金 (12171081); 上海市自然科学基金(23ZR1402600); 上海市启明星计划扬帆专项 (22YF1400900); 东华大学虚拟仿真实验教学项目

Ergodicity for population dynamics driven by a class of $\alpha $ -stable process with negative jumps

Jinying TONG1(), Ziyi LIANG1, Wenze CHEN1, Zhenzhong ZHANG1, Xin ZHAO1,2   

  1. 1. School of Mathematics and Statistics, Donghua University, Shanghai 201620, China
    2. Shanghai Engineering Research Center of Artificial Intelligence Network, Shanghai 201203, China
  • Received:2024-01-07 Online:2025-01-25 Published:2025-01-20

摘要:

为拟合随机环境与重大因素的影响, 基于马氏链与带负跳$\alpha$ - 稳定过程, 建立了一类种群互惠模型. 首先, 证明了该种群模型具有全局正解性; 其次, 给出了该模型的遍历性的充分条件.

关键词: $\alpha $ -稳定过程, 马氏链, 遍历性, 负跳

Abstract:

In order to characterize that stochastic environment, we consider a class facultative population systems driven by Markov chains and pure-jump stable processes with negative jumps. To begin with, the existence and uniqueness for global positive solution is proved for our model. Then, some sufficient conditions for stationary distribution are provided.

Key words: $\alpha $ -stable processes, Markov chains, ergodicity, negative jumps

中图分类号: