华东师范大学学报(自然科学版) ›› 2014, Vol. 2014 ›› Issue (5): 240-251.doi: 10.3969/j.issn.10005641.2014.05.021
张宇1,2,张延松1,2,3,张兵1,2,陈红1,2,王珊1,2
ZHANG Yu1,2, ZHANG Yan-Song1,2,3, ZHANG Bing1,2, CHEN Hong1,2, WANG Shan1,2
摘要: 当前GPU(图形处理器),即使是中端服务器配置的中端GPU也拥有强大的并行计算能力.不同于近期的研究成果,中端服务器可能配置有几块高端CPU和一块中端GPU,GPU能够提供额外的计算能力而不是提供比CPU更加强大的计算能力.本文以中端工作站上的Co-OLAP(协同OLAP)为中心,描述如何使中端GPU与强大的CPU协同以及如何在计算均衡的异构平台上分布数据和计算以使Co-OLAP模型简单而高效.根据实际的配置,基于内存容量,GPU显存容量,数据集模式和订制的AIR(数组地址引用)算法提出了最大高性能数据分布模型. Co-OLAP模型将数据划分为驻留于内存和GPU显存的数据集,OLAP计算也划分为CPU和GPU端的自适应计算负载来最小化CPU和GPU内存之间的数据传输代价.实验结果显示,在SF=20的SSB(星形模型基准)测试中,两块至强六核处理器的性能略优于一块NVIDA Quadra 5 000 GPU(352个cuda核心)的处理性能, Co-OLAP模型可以将负载均衡分布在异构计算平台并使每个平台简单而高效.
中图分类号: