[1]DOUGLAS D H, PEUCKER T K. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature[J]. Cartographica: The International Journal for Geographic Information and Geovisualization, 1973, 10(2): 112122.[2]KEOGH E, CHU S, HART D, et al. An online algorithm for segmenting time series[C]Proceedings of the IEEE International Conference on Data Mining. IEEE, 2001: 289296.[3]POTAMIAS M, PATROUMPAS K, SELLIS T. Sampling trajectory streams with spatiotemporal criteria[C]Proceedings of the 18th IEEE International Conference on Scientific and Statistical Database Management. IEEE, 2006: 275284.[4]LERIN P M, YAMAMOTO D, Takahashi N. Encoding travel traces by using road networks and routing algorithms[M]Intelligent Interactive Multimedia: Systems and Services. Berlin: Springer, 2012: 233243. [5]KELLARIS G, PELEKIS N, THEODORIDIS Y. Trajectory compression under network constraints[M]Advances in Spatial and Temporal Databases. Berlin: Springer, 2009: 392398.[6]KELLARIS G, PELEKIS N, THEODORIDIS Y. Mapmatched trajectory compression[J]. Journal of Systems and Software, 2013, 86(6): 15661579.[7]SONG R, SUN W, ZHENG B, et al. PRESS: A novel framework of trajectory compression in road networks[C]Proceedings of the 40th International Conference on Very Large Data Bases. ACM, 2014: 14021546.[8]MUCKELL J, HWANG J H, LAWSON C T, et al. Algorithms for compressing GPS trajectory data: An empirical evaluation[C]Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems. ACM, 2010: 402405.[9]SCHMID F, RICHTER K F, LAUBE P. Semantic trajectory compression[M]Advances in Spatial and Temporal Databases. Berlin: Springer, 2009: 411416.[10]RICHTER K F, SCHMID F, LAUBE P. Semantic trajectory compression: Representing urban movement in a nutshell[J]. Journal of Spatial Information Science, 2014 (4): 330.[11]YAN Z, SPACCAPIETRA S. Towards semantic trajectory data analysis: A conceptual and computational approach[C]Proceedings of the International Conference on Very Large Data Bases PhD Workshop. 2009:16.[12]DAMIANI M L, SPACCAPIETRA S, PARENT C, et al. A conceptual view on trajectories[J]. Data and Knowledge Engineering, 2008, 65(1):126146.[13]HERSHBERGER J E, SNOEYINK J. Speeding up the douglaspeucker linesimplification algorithm[M]International Symposium on Spatial Data Handling. Berlin: Springer, 1992:134143.[14]MERATNIA N, ROLF A. Spatiotemporal compression techniques for moving point objects[M]Advances in Database Technology. Berlin: Springer, 2004: 765782.[15]LIU J, ZHAO K, SOMMER P, et al. Bounded quadrant system: Errorbounded trajectory compression on the go[C]Proceedings of the 31st IEEE International Conference on Data Engineering. IEEE, 2015: 987998.[16]MUCKELL J, HWANG J H, PATIL V, et al. SQUISH: An online approach for GPS trajectory compression[C]Proceedings of the 2nd International Conference on Computing for Geospatial Research and Applications. ACM, 2011: 18.[17]MUCKELL J, OLSEN P W, HWANG J H, et al. Compression of trajectory data: A comprehensive evaluation and new approach[J]. Geoinformatica, 2014, 18(3):435460.[18]BRAKATSOULAS S, PFOSER D, SALAS R, et al. On mapmatching vehicle tracking data[C]Proceedings of the 31st International Conference on Very Large Data Bases. ACM, 2005: 853864.[19]HU C, WOLFSON O. Nonmaterialized motion information in transport networks[C]Proceedings of the 10th International Conference on Database Theory. 2005:173188.[20]YIN H, WOLFSON O. A weightbased map matching method in moving objects databases[C]Proceedings of the IEEE International Conference on Scientific and Statistical Database Management. IEEE, 2004: 437438.[21]SU H, ZHENG K, ZENG K, et al. STMaker—A system to make sense of trajectory data[C]Proceedings of the 40th International Conference on Very Large Data Bases. ACM, 2014:17011704.[22]SU H, ZHENG K, ZENG K, et al. Making sense of trajectory data: A partitionandsummarization approach[C]Proceedings of the 31st IEEE International Conference on Data Engineering. IEEE, 2015: 963974.[23]ZHENG Y, ZHOU X. Computing with Spatial Trajectories[M]. Berlin: Springer, 2011.[24]CHEN L, ZSU M T, ORIA V. Robust and fast similarity search for moving object trajectories[C]Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data. ACM, 2005: 491502.[25]CHEN Z, SHEN H T, ZHOU X, et al. Monitoring path nearest neighbor in road networks[C]Proceedings of the 35th SIGMOD International Conference on Management of Data. 2009:591602.[26]SHANG S, DENG K, XIE K. Best point detour query in road networks[C]Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems. ACM, 2010: 7180.[27]PFOSER D, JENSEN C S, THEODORIDIS Y. Novel approaches in query processing for moving object trajectories[C]Proceedings of the 26th International Conference on Very Large Data Bases. ACM, 2000: 395406.[28]FRENTZOS E, GRATSIAS K, PELEKIS N, et al. Algorithms for nearest neighbor search on moving object trajectories[J]. Geoinformatica, 2007, 11(2):159193.[29]CHEN Z, SHEN H T, ZHOU X, et al. Searching trajectories by locations: An efficiency study[C]Proceedings of the 2010 ACM SIGMOD International Conference on Management of data. ACM, 2010: 255266.[30]LEE J G, HAN J, WHANG K Y. Trajectory clustering: A partitionandgroup framework[C]Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data. ACM, 2007: 593604.[31]JEUNG H, YIU M L, ZHOU X F, et al. Discovery of convoys in trajectory databases[C]Proceedings of the 34th International Conference on Very Large Data Bases. ACM, 2008: 10681080.[32]LEE J, HAN J, LI X, et al. TraClass: Trajectory classification using hierarchical regionbased and trajecorybased clustering[C]Proceedings of the 34th International Conference on Very Large Data Bases. 2008: 10811094.[33]CONG G, LU H, OOI B C, et al. Efficient spatial keyword search in trajectory databases[R/OL]. arXiv:1205.2880v1.[34]CHEN L, CONG G, JENSEN C S, et al. Spatial keyword query processing: An experimental evaluation[C]Proceedings of the 39th International Conference on Very Large Data Bases. ACM, 2013: 217228.[35]CARY A, WOLFSON O, RISHE N. Efficient and scalable method for processing topk spatial boolean queries[M]Scientific and Statistical Database Management. Heidelberg: Springer, 2010: 8795.[36]CONG G, JENSEN C S, WU D. Efficient retrieval of the topk most relevant spatial web objects[C]Proceedings of the 35th International Conference on Very Large Data Bases. ACM, 2009: 337348.[37]LI Z, LEE K C K, ZHENG B, et al. An efficient index for geographic document search[J]. IEEE Transactions on Knowledge and Data Engineering, 2011, 23(4): 585599.[38]WU D, MAN L Y, CONG G, et al. Joint topk spatial keyword query processing[J]. IEEE Transactions on Knowledge and Data Engineering, 2012, 24(10): 19891903.[39]KHODAEI A, SHAHABI C, LI C. Hybrid indexing and seamless ranking of spatial and textual features of web documents[J]. Lecture Notes in Computer Science, 2010: 450466.[40]VAID S, JONES C B, JOHO H, et al. Spatiotextual indexing for geographical search on the web[C]Proceedings of the 9th Symposium on Spatial and Temporal Databases. 2005: 218235.[41]WU D, YIU M L, JENSEN C S, et al. Efficient continuously moving topk spatial keyword query processing[C]Proceedings of the 27th International Conference on Data Engineering. 2011: 541552.[42]ZHOU Y, XIE X, WANG C, et al. Hybrid index structures for locationbased web search[C]Proceedings of the 14th ACM international conference on Information and Knowledge Management. ACM, 2005: 155162.[43]CUDREMAUROUX P, WU E, MADDEN S. TrajStore: An adaptive storage system for very large trajectory data sets[C]Proceedings of the 26th IEEE International Conference on Data Engineering. IEEE, 2010: 109120.[44]WU E, CUDREMAUROUX P, MADDEN S. Demonstration of the trajStore system[C]Proceedings of the 35th International Conference on Very Large Data Bases. ACM, 2009: 15541557.[45]WANG H, ZHENG K, XU J, et al. Sharkdb: An inmemory columnoriented trajectory storage[C]Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management. ACM, 2014: 14091418.[46]NISHIMURA S, DAS S, AGRAWAL D, et al. MDHBase: A scalable multidimensional data infrastructure for location aware services[C]Proceedings of the 12th IEEE International Conference on Mobile Data Management. IEEE, 2011: 716.[47]HUANG S, WANG B, ZHU J Y, et al. RHBase: A multidimensional indexing framework for cloud computing environment[C]Proceedings of the 14th IEEE International Conference on Data Mining Workshops. IEEE, 2014: 569574.[48]ELDAWY A, MOKBEL M F. A demonstration of SpatialHadoop: An efficient mapReduce framework for spatial data[J]. Proceedings of the 39th International Conference on Very Large Data Bases. ACM, 2013: 12301233.[49]ELDAWY A. SpatialHadoop: Towards flexible and scalable spatial processing using mapreduce[C]Proceedings of the SIGMOD PhD Symposium. ACM, 2014: 4650. |