华东师范大学学报(自然科学版) ›› 2017, Vol. 2017 ›› Issue (5): 154-161,185.doi: 10.3969/j.issn.1000-5641.2017.05.014

• 用户行为分析 • 上一篇    下一篇

基于复杂属性商品的混合协同过滤推荐模型

周兰凤, 麻双克, 付正, 张晴   

  1. 上海应用技术大学 计算机科学与信息工程学院, 上海 201418
  • 收稿日期:2017-06-19 出版日期:2017-09-25 发布日期:2017-09-25
  • 通讯作者: 张晴,女,讲师,研究方向为图像处理.E-mail:zhangqing0329@gmail.com E-mail:zhangqing0329@gmail.com
  • 作者简介:周兰凤,女,副教授,研究方向为人工智能及大数据.E-mail:lfzhou@sit.edu.cn
  • 基金资助:
    国家自然科学基金(41671402)

A hybrid collaborative filtering recommendation model based on complex attribute of goods

ZHOU Lan-feng, MA Shuang-ke, FU Zheng, ZHANG Qing   

  1. School of Computer Science and Information Engineering, Shanghai Institute of Technology, Shanghai 201418, China
  • Received:2017-06-19 Online:2017-09-25 Published:2017-09-25

摘要: 协同过滤作为应用最广、研究最多的推荐算法,但依旧面临数据稀疏性、冷启动、数据质量差等固有问题,同时也鲜有研究者从实用角度基于商品性价比方面提高预测精确度.为此,本文综合考虑用户主观评分和商品客观评分,并在此基础上结合情境预过滤、社会网络理论以及专家意见提出了一种混合协同过滤推荐模型,在一定程度上缓解了上述缺点.并通过真实网上汽车销售数据实验,表明该模型相对传统协同过滤具有更高的预测精度,更适用于具有复杂属性的商品.

关键词: 协同过滤, 情境, 复杂属性, 个性化推荐

Abstract: Collaborative filtering as the most widely used, the most recommendation algorithm, the shortcomings inherent in the data sparse, cold startpoor data quality and others, and few studies based on commodity price to improve the prediction accuracy. At the same time, facing the full e-commerce market network Navy, the ratings and reviews also indirectly led to the predict a decline in accuracy. Therefore, this paper comprehensive consideration of the user subjective ratings and objective product score, and on this basis, combined with situation pre filtering, social network theory and expert opinions put forward a hybrid collaborative filtering recommendation model, to some extent alleviate the above shortcomings. And through experiment with real online car sales data, the model has higher forecast accuracy than the traditional collaborative filtering, and is more suitable for the commodity with complex attributes.

Key words: collaborative filtering, context, complex attribute, personalized recommendation

中图分类号: