[1] WU J, ZOU X. Travelling wave fronts of reaction diffusion systems with delays[J]. Journal of Dynamics and Differential Equations, 2001, 13(3):651-687.
[2] ZOU X, Delay induced traveling wave fronts in reaction diffusion equation of Kpp-Fisher type[J]. Journal of Computation and Applied Mathematics, 2002, 146(2):309-321.
[3] WANG Z C, LI W T, RUAN S G. Traveling wave fronts in reaction-diffusion systems with spatio-temporal delays[J]. Journal of Differential Equation, 2006, 222(1):185-232.
[4] LI W T, RUAN S G, WANG Z C. On the diffusive Nicholson's blowflies equation with nonlocal delay[J]. Journal of Nonlinear Science, 2007, 17(6):505-525.
[5] WANG Z, LI W, RUAN S. Existence and stability of traveling wave fronts in reaction advection diffusion equations with nonlocal delay[J]. Journal of Differential Equations, 2007, 238(1):153-200.
[6] LI W T, LIN G, RUAN S G. Existence of travelling wave solution in delayed reaction diffusion systems with applications to diffusion competition systems[J]. Nonlinearity, 2006, 19(6):1253-1273.
[7] ZHANG J M, PENG Y H. Travelling waves of the diffusive Nicholson's blowflies equation with strong generic delay kernel and non-local effect[J]. Nonlinear Analysis, 2008, 68(5):1263-1270.
[8] FENICHEL N. Geometric singular perturbation theory for ordinary differential equations[J]. Journal Differential Equations, 1979, 31(1):53-98.
[9] SHERRATT J A. Invading wave fronts and their oscillatory wakes are linked by a modulated travelling phase resetting wave[J]. Physica D, 1998, 117(1):145-166.
[10] BRITTON N F. Aggregation and the competitive exclusion principle[J]. Journal of theoretical biology, 1989, 136(1):57-66. |