[1] GOLDMAN M B, SOSIN H B, GATTO M A. Path dependent options:Buy at the low, sell at the high[J]. Journal of Finance, 1979, 34(5):1111-1127.
[2] CONZE A, VISWANATHAN. Path dependent options:The case of lookback options[J]. Journal of Finance, 1991, 46(5):1893-1907.
[3] GARMAN M. Recollection in tranquility, in form Black-Scholes to Black Holes:New frontiers in options[J]. Risk Magazine, 1992:171-175.
[4] BROADIE M, KOU S G. Connecting discrete and continuous path-dependent options[J]. Finance and Stochastics, 1998, 2:1-20.
[5] AITSAHLIA F, LAI T L. Random walk duality and the valuation of discrete lookback options[J]. Applied Mathematical Finance, 1998, 5:227-240.
[6] 袁国军, 杜雪樵. 有交易成本的回望期权定价研究[J]. 运筹与管理, 2006, 15(3):141-143.
[7] PETERS E E. Fractal structure in the capital markets[J]. Financial Analyst Journal, 1989, 45(4):32-37.
[8] ROGERS L C G. Arbitrage with fractional Brownian motion[J]. Mathematical Finance, 1997, 7(1):95-105.
[9] 孙琳. 分数布朗运动下带交易费用的期权定价[J]. 系统工程, 2009, 27(9):36-40.
[10] 桑利恒, 杜雪樵. 分数布朗运动下的回望期权定价[J]. 合肥工业大学学报(自然科学版), 2010, 30(5):797-800.
[11] WANG X T. Scaling and long-range dependence in option pricing IV:Pricing European option with transaction costs under the fractional Black-Scholes model[J]. Physica A, 2010, 389(4):789-796.
[12] WANG X T, ZHU E H, TANG M M, et al. Scaling and long-range dependence in option pricing Ⅱ:Pricing European option with transaction under the mixed Brownian fractional Brownian model[J]. Physica A, 2010, 389(3):445-451.
[13] KABANOV Y M, SAFARIAN M M. On Leland's strategy of option pricing with transactions costs[J]. Finance and Stochastics, 1997, l(3):239-250.
[14] GRANDITS P, SCHACHINGERY W. Leland's approach to option pricing:The evolution of a discontinuity[J]. Mathematical Finance, 2001, 11:347-355.
[15] MERTON R C. Continuous Time Finance[M]. Oxford:Blackwell Publishers, 1990. |