[1] ABRAMOWITZ M, STEGUN I A, ROMAIN J E. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables[M]. New York:Dover, 1964. [2] LOZIER D W. NIST Digital library of mathematical functions[J]. Annals of Mathematics & Artificial Intelligence, 2003, 38(1/3):105-119. [3] 常晓阳. 几类特殊函数的赋值分析研究[D]. 上海:华东师范大学,2018. [4] MILLANE R P, EADS J L. Polynomial approximations to Bessel functions[J]. IEEE Transactions on Antennas & Propagation, 2003, 51(1):1398-1400. [5] MATVIYENKO G. On the evaluation of Bessel functions[J]. Applied and Computational Harmonic Analysis, 1993, 1(1):116-135. [6] ANDRUSYK A. Infinite series representations for Bessel functions of the first kind of integer order[EB/OL].[2018-10-20]. https://arxiv.org/abs/1210.2109 [7] HILDEBRAND F B. Introduction to Numerical Analysis[M]. New Delhi:Tata McGraw-Hill Publishing Company Limited, 1956. [8] BOßMANN F, PLONKA G, PETER T, et al. Sparse deconvolution methods for ultrasonic NDT[J]. Journal of Nondestructive Evaluation, 2012, 31(3):225-244. [9] ROY R, PAULRAJ A, KAILATH T. Estimation of signal parameters via rotational invariance techniquesESPRIT[C]//Proceedings of the SPIE. International Society for Optics and Photonics, 1986:94-101. [10] HUA Y, SARKAR T K. Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1990, 38(5):814-824. [11] POTTS D, TASCHE M. Nonlinear approximation by sums of nonincreasing exponentials[J]. Applicable Analysis, 2011, 90(3/4):18. [12] YANAI T, FANN G I, GAN Z, et al. Multiresolution quantum chemistry in multiwavelet bases:Analytic derivatives for Hartree-Fock and density functional theory[J]. Journal of Chemical Physics, 2004, 121(7):2866-2876. [13] BEYLKIN G, CRAMER R, FANN G, et al. Multiresolution separated representations of singular and weakly singular operators[J]. Applied & Computational Harmonic Analysis, 2007, 23(2):235-253. [14] HANKE M. One shot inverse scattering via rational approximation[J]. Siam Journal on Imaging Sciences, 2012, 5(1):465-482. [15] GOLUB G H, MILANFAR P, VARAH J. A Stable Numerical Method for Inverting Shape from Moments[M]. Society for Industrial and Applied Mathematics, 1999. [16] GIESBRECHT M, LABAHN G, LEE W S. Symbolic-numeric sparse polynomial interpolation in Chebyshev basis and trigonometric interpolation[C]//Proceedings of Computer Algebra in Scientific Computing (CASC 2004), 2004:195206. [17] CUYT A, LEE W S. Generalized eigenvalue relations:Spread polynomials and sine[R]. 2018. |