[1] WU J. Theory and Applications of Partial Functional Differential Equations [M]. New York: Springer-Verlag, 1996. [2] MURRAY J D. Mathematical Biology: Spatial Models and Biomedical Applications [M]. New York: Springer, 2003. [3] GOURLEY S A, CHAPLAM M A J, DAVIDSON F A. Spatiotemporal pattern formation in a nonlocal reaction-diffusion equation [J]. Dynamical Systems: An International Journal, 2001, 16: 173-192. DOI: 10.1080/14689360116914. [4] ASHWIN P, BARTUCCELLI M V, BRIDGES T J, et al. Travelling fronts for the Kpp equation with spatiotemporal delay [J]. Z ANGEW MATH PHYS, 2002, 53: 103-122. DOI: 10.1007/s00033-002-8145-8. [5] WANG Y F, YIN J X. Traveling waves for a biological reaction diffusion model with spatiotemporal delay [J]. J Math Anal Appl, 2007, 325: 1400-1409. DOI: 10.1016/j.jmaa.2006.02.077. [6] WANG Z C, LI W T, RUAN S G. Travelling wave fronts in reaction-diffusion systems with spatio-temporal delays [J]. J Differential Equation, 2006, 222: 185-232. DOI: 10.1016/j.jde.2005.08.010. [7] WU C, LI M, WENG P. Existence and stability of traveling wave fronts for a reaction-diffusion system with spatio-temporal nonlocal effect [J]. ZAMM‐Journal of Applied Mathematics and Mechanics, 2017, 97(12): 1555-1578. DOI: 10.1002/zamm.201600170. [8] ZHANG H T, LI L. Traveling wave fronts of a single species model with cannibalism and nonlocal effect [J]. Chaos, Solitons & Fractals, 2018, 108: 148-153. [9] ZUO W J, SHI J P. Traveling wave solutions of a diffusive ratio-dependent Holling-Tanner system with distributed delay [J]. Communications on Pure & Applied Analysis, 2018, 17(3): 1179-1200. [10] LI W T, RUAN S, WANG Z C. On the diffusive Nicholson’s blowflies equation with nonlocal delay [J]. J Nonlinear Science, 2007, 17: 505-525. DOI: 10.1007/s00332-007-9003-9. [11] ZHANG J, PENG Y. Travelling waves of the diffusive Nicholson’s blowflies equation with strong generic delay kernel and non-local effect [J]. Nonlinear Analysis: Theory, Methods & Applications, 2008, 68(5): 1263-1270. [12] ZHANG C, YAN X. Wavefront solutions in diffusive Nicholson’s blowflies equation with nonlocal delay [J]. Applied Mathematics and Mechanics, 2010, 31(3): 385-392. DOI: 10.1007/s10483-010-0311-x. [13] BRITTON N F. Aggregation and the competitive exclusion principle [J]. Journal of Theoretical Biology, 1989, 136: 57-66. DOI: 10.1016/S0022-5193(89)80189-4. [14] BRITTON N F. Spatial structures and periodic traveling wave in an integro-differential reaction diffusion population model [J]. SIAM Journal of Applied Mathematics, 1990, 50: 1663-1688. DOI: 10.1137/0150099. [15] FENICHEL N. Geometric singular perturbation theory of for ordinary differential equations [J]. J Differential Equation, 1979, 31: 53-98. DOI: 10.1016/0022-0396(79)90152-9. |