[1] HUANG G, CHENG X, WANG J, et al. X-Engine: An optimized storage engine for large-scale E-commerce transaction processing [C]// Proceedings of the 2019 International Conference on Management of Data, SIGMOD Conference 2019. Amsterdam, 2019: 651-665. [2] PAN W, LI Z, ZHANG Y, et al. The new hardware development trend and the challenges in data management and analysis [J]. Data Science and Engineering, 2018, 3(3): 263-276. [3] NARULA N, CUTLER C, KOHLER E, et al. Phase reconciliation for contended in-memory transactions [C]// 11th USENIX Symposium on Operating Systems Design and Implementation, OSDI’14. Broomfield, CO, 2014: 511-524. [4] FALEIRO J M, ABADI D J. Rethinking serializable multiversion concurrency control [J]. Proceedings of the VLDB Endowment, 2015, 8(11): 1190-1201. [5] PANDIS I, JOHNSON R, HARDAVELLAS N, et al. Data-oriented transaction execution [J]. Proceedings of the VLDB Endowment, 2010, 3(1): 928-939. [6] HASTORUN D, JAMPANI M, KAKULAPATI G, et al. Dynamo: Amazon’s highly available key-value store [C]// Proceedings of the 21st ACM Symposium on Operating Systems Principles 2007, SOSP 2007. Stevenson, Washington, 2007: 205-220. [7] REN K, FALEIRO J M, ABADI D J. Design principles for scaling multi-core oltp under high contention [C]// Proceedings of the 2016 International Conference on Management of Data, SIGMOD Conference 2016. San Francisco, 2016: 1583-1598. [8] TIAN B, HUANG J, MOZAFARI B, et al. Contention-aware lock scheduling for transactional databases [J]. Proceedings of the VLDB Endowment, 2018, 11(5): 648-662. [9] WANG T, KIMURA H. Mostly-optimistic concurrency control for highly contended dynamic workloads on a thousand cores [J]. Proceedings of the VLDB Endowment, 2016, 10(2): 49-60. [10] SELLIS T K. Multiple-query optimization [J]. ACM Transactions on Database Systems, 1988, 13(1): 23-52. [11] MAKRESHANSKI D, GIANNIKIS G, ALONSO G, et al. MQJoin: Efficient shared execution of main-memory joins [J]. Proceedings of the Endowment, 2016, 9(6): 480-491. [12] CANDEA G, POLYZOTIS N, VINGRALEK R. Predictable performance and high query concurrency for data analytics [J]. The VLDB Journal, 2011, 20(2): 227-248. [13] GIANNIKIS G, ALONSO G, KOSSMANN D. SharedDB: Killing one thousand queries with one stone [J]. Proceedings of the VLDB Endowment, 2012, 5(6): 526-537. [14] MAKRESHANSKI D, GICEVA J, BARTHELS C, et al. BatchDB: Efficient isolated execution of hybrid OLTP+ OLAP workloads for interactive applications [C]// Proceedings of the 2017 ACM International Conference on Management of Data, SIGMOD Conference 2017. Chicago: ACM, 2017: 37-50. [15] REHRMANN R, BINNIG C, BÖHM A, et al. Oltpshare: The case for sharing in OLTP workloads [J]. Proceedings of the VLDB Endowment, 2018, 11(12): 1769-1780. [16] ZHANG C, LI Y, ZHANG R, et al. Benchmarking on intensive transaction processing [J]. Frontiers of Computer Science, 2020, 14(5): 1-18. [17] BERNSTEIN P A, HADZILACOS V, GOODMAN N. Concurrency Control and Recovery in Database Systems [M]. Massachusetts: Addison-Wesley, 1987. [18] RODEH O. B-trees, shadowing, and clones [J]. ACM Transactions on Storage, 2008, 3(4): 1-27.
|