[1] PASSERINI F, TONELLO A M. Smart grid monitoring using power line modems: Effect of anomalies on signal propagation[EB/OL]. (2019-01-21)[2020-07-01]. https://arxiv.org/pdf/1806.10991.pdf. [2] FANG X, MISRA S, XUE G, et al. Smart grid — The new and improved power grid: A survey [J]. IEEE Communications Surveys & Tutorials, 2012, 14(4): 944-980. [3] 林鸿, 方学民, 袁葆, 等. 电力物联网多渠道客户服务中台战略研究与设计 [J]. 供用电, 2019(6): 36-45 [4] 李炳森, 胡全贵, 陈小峰, 等. 电网企业数据中台的研究与设计 [J]. 电力信息与通信技术, 2019, 17(7): 29-34 [5] TAO F, ZHANG M, CHENG J, et al. Digital twin workshop: A new paradigm for future workshop [J]. Computer Integrated Manufacturing Systems, 2017, 23: 1-9. [6] 杨林瑶, 陈思远, 王晓, 等. 数字孪生与平行系统:发展现状、对比及展望 [J]. 自动化学报, 2019, 45(11): 2001-2031 [7] CHANDOLA V, BNAERJEE A, KUMAR V. Anomaly detection for discrete sequences: A survey [J]. IEEE Transactions on Knowledge & Data Engineering, 2012, 24(5): 823-839. [8] WITTEN I H, FRANK E. Data Mining: Practical Machine Learning Tools and Techniques [M]. 3rd ed. 北京:机械工业出版社, 2005. [9] CHALAPATHY R, CHAWLA S. Deep learning for anomaly detection: A survey [EB/OL]. (2019-01-23)[2020-07-01]. https://arxiv.org/pdf/1901.03407.pdf. [10] 杨漾, 张诗军, 陈丰, 等. 电力大数据平台建设及实时线损异常检测应用 [J]. 现代计算机, 2016(36): 10-16 [11] 刘凤魁. 基于密度峰值聚类算法的电力大数据异常值检测及用电行为分析研究 [D]. 北京:中国电力科学研究院, 2017. [12] 梁跃. 基于机器学习的电力用户用电异常检测技术研究 [D]. 北京:北京邮电大学, 2019. [13] 余翔, 陈国洪, 李霆, 等. 基于孤立森林算法的用电数据异常检测研究 [J]. 信息技术, 2018, 42(12): 88-92 [14] SCHöLKOPF B, PLATT J, HOFMANN T. Greedy layer-wise training of deep networks [J]. Advances in Neural Information Processing Systems, 2007, 19: 153-160. [15] SEWAK M, SAHAY S K, RATHORE H. An overview of deep learning architecture of deep neural networks and autoencoders [J]. Journal of Computational and Theoretical Nanoscience, 2020, 17(1): 182-188. [16] 王雅思, 姚鸿勋, 孙晓帅, 等. 深度学习中的自编码器的表达能力研究 [J]. 计算机科学, 2015, 42(09): 56-60 [17] 唐朝辉, 朱清新, 洪朝群, 等. 基于自编码器及超图学习的多标签特征提取 [J]. 自动化学报, 2016(7): 1014-1021 [18] 张雪菲, 程乐超, 白升利, 等. 基于变分自编码器的人脸图像修复 [J]. 计算机辅助设计与图形学学报, 2020(3): 401-409 [19] GOODFELLOW I, BENGIO Y, COURVILLE A. Deep Learning [M]. Massachusetts:The MIT Press, 2016. [20] 宋辉, 代杰杰, 张卫东, 等. 基于变分贝叶斯自编码器的局部放电数据匹配方法 [J]. 中国电机工程学报, 2018, 38(19): 5869-5877 [21] KINGMA D, WELLING M. Auto-encoding variational bayes [EB/OL]. (2014-05-01)[2020-07-01]. https://arxiv.org/pdf/1312.6114.pdf. [22] 翟正利, 梁振明, 周炜, 等. 变分自编码器模型综述 [J]. 计算机工程与应用, 2019, 55(3): 1-9 [23] CHANDOLA V, BANERJEE A, KUMAR V. Anomaly detection [J]. ACM Computing Surveys, 2009, 41(3): 1-58. [24] AZUAJE F, WITTEN I, E F. WITTEN I H, et al. Data mining: Practical machine learning tools and techniques [J]. Biomedical Engineering Online - BIOMED ENG ONLINE, 2006(5): 1-2. [25] AN J, CHO S. Variational autoencoder based anomaly detection using reconstruction probability[C]// 2015-2 Special Lecture on IE. 2015:1-10. [26] WANG C, TINDEMANS S, PAN K, et al. Detection of false data injection attacks using the autoencoder approach [EB/OL]. (2020-05-22)[2020-07-01]. https://arxiv.org/pdf/2003.02229.pdf. [27] WANG R, NIE K, WANG T, et al. Deep Learning for Anomaly Detection [C]//WSDM '20: Proceedings of the 13th International Conference on Web Search and Data Mining. 2020: 894-896. [28] LIU F T, TING K M, ZHOU Z. Isolation forest [C]// 2008 Eighth IEEE International Conference on Data Mining. 2008: 413-422. [29] TRAN T N, DRAB K, DASZYKOWSKI M. Revised DBSCAN algorithm to cluster data with dense adjacent clusters [J]. Chemometrics & Intelligent Laboratory Systems, 2013, 120: 92-96.
|