[1] VERES M, MOUSSA M. Deep learning for intelligent transportation systems: A survey of emerging trends [J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 12(8): 3152-3168. [2] GHOSE A, LI B B, LIU S Y. Mobile targeting using customer trajectory patterns [J]. Management Science, 2019, 65(11): 5027-5049. [3] JEUNG H, YIU M L, ZHOU X F, et al. Discovery of convoys in trajectory databases [J]. Proceedings of the VLDB Endowment, 2008, 1(1): 1068-1080. [4] LI Z H, DING B L, HAN J W, et al. Swarm: Mining relaxed temporal moving object clusters [J]. Proceedings of the VLDB Endowment, 2010, 3(1/2): 723-734. [5] ZHENG K, ZHENG Y, YUAN N J, et al. Online discovery of gathering patterns over trajectories [J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(8): 1974-1988. [6] LI X C, ZHAO K Q, CONG G, et al. Deep representation learning for trajectory similarity computation [C]// 2018 IEEE 34th International Conference on Data Engineering (ICDE). IEEE, 2018: 617–628. [7] YAO D, CONG G, ZHANG C, et al. Computing trajectory similarity in linear time: A generic seed-guided neural metric learning approach [C]// 2019 IEEE 35th International Conference on Data Engineering (ICDE). IEEE, 2019: 1358–1369. [8] YAO D, ZHANG C, ZHU Z H, et al. Trajectory clustering via deep representation learning [C]// 2017 International Joint Conference on Neural Networks (IJCNN). IEEE, 2017: 3880–3887. [9] CHU E, LIU P J. MeanSum: A neural model for unsupervised multi-document abstractive summarization [EB/OL].(2019-05-22)[2020-07-01]. https://arxiv.org/pdf/1810.05739.pdf. [10] LEUTENEGGER S T, LOPEZ M A, EDGINGTON J. STR: A simple and efficient algorithm for R-tree packing [C]// Proceedings 13th International Conference on Data Engineering. IEEE, 1997: 497–506. [11] GEHRING J, AULI M, GRANGIER D, et al. Convolutional sequence to sequence learning [C]// Proceedings of the 34th International Conference on Machine Learning - Volume 70. New York: JMLR, 2017: 1243–1252. [12] AL-NAYMAT G, CHAWLA S, GUDMUNDSSON J. Dimensionality reduction for long duration and complex spatio-temporal queries [C]// Proceedings of the 2007 ACM Symposium on Applied Computing. ACM, 2007: 393–397. [13] ZHANG Y F, LIU A, LIU G F, et al. Deep representation learning of activity trajectory similarity computation [C]//IEEE International Conference on Web Services (ICWS). IEEE, 2019: 312–319. [14] MIKOLOV T, SUTSKEVER I, CHEN K, et al. Distributed representations of words and phrases and their compositionality [C]// Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. New York: Curran Associates Inc., 2019: 3111–3119. [15] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: Curran Associates Inc., 2017: 6000-6010.
|