华东师范大学学报(自然科学版) ›› 2022, Vol. 2022 ›› Issue (6): 87-101.doi: 10.3969/j.issn.1000-5641.2022.06.010

• 计算机科学 • 上一篇    下一篇

基于学习者知识和性格的个性化课程推荐

班启敏1, 吴雯1,*(), 胡文心2, 林晖3, 郑巍4, 贺樑1   

  1. 1. 华东师范大学 计算机科学与技术学院, 上海 200062
    2. 华东师范大学 数据科学与工程学院,上海 200062
    3. 上海流利说信息技术有限公司, 上海 200090
    4. 华东师范大学 信息化治理办公室,上海 200062
  • 收稿日期:2020-11-01 出版日期:2022-11-25 发布日期:2022-11-22
  • 通讯作者: 吴雯 E-mail:wwu@cc.ecnu.edu.cn
  • 基金资助:
    国家自然科学基金 (61907016); 上海市科学技术委员会资助项目 (19511120200, 21511100302)

Personalized course recommendations based on a learner’s knowledge and personality

Qimin BAN1, Wen WU1,*(), Wenxin HU2, Hui LIN3, Wei ZHENG4, Liang HE1   

  1. 1. School of Computer Science and Technology, East China Normal University, Shanghai 200062, China
    2. School of Data Science and Engineering, East China Normal University, Shanghai 200062, China
    3. Shanghai Liulishuo Information Technology Co. Ltd., Shanghai 200090, China
    4. Information Technology Services, East China Normal University, Shanghai 200062, China
  • Received:2020-11-01 Online:2022-11-25 Published:2022-11-22
  • Contact: Wen WU E-mail:wwu@cc.ecnu.edu.cn

摘要:

自适应学习是使用计算机算法来协调自适应学习平台与学习者的互动, 并提供定制学习资源和学习活动来解决每位学习者的独特需求的教育方法. 自适应学习随着新冠疫情的影响变得越来越重要, 它面临的主要挑战之一是如何为学习者提供定制的学习资源, 即如何在海量的学习资源中为学习者生成个性化的推荐. 现存的方法大多使用基于学习者知识级别的推荐, 然而这些方法存在一些不足. 首先, 在获取学习者知识级别时, 学习者在学习过程中出现的遗忘现象并未得到很好的建模. 其次, 在推荐时, 这些方法将获取学习者知识级别的知识追踪技术和推荐分开进行, 忽视了这两者之间的深层连接关系. 此外, 仅考虑学习者的知识来建模, 将会忽略学习者对于学习资源类型、学习策略等的偏好. 为解决上述问题, 给出了一个知识和性格结合的多任务学习框架(Knowledge and Personality Incorporated Multi-Task Learning Framework, KPM)去促进课程 (即上文所指的学习资源) 的推荐, 该框架将增强的知识追踪任务作为辅助任务去协助主要的课程推荐任务. 具体地, 在增强的知识追踪任务(Enhanced Knowledge Tracing Task, EKTT)中, 设计了一个个性化的遗忘控制器去增强深度知识追踪模型, 从而更加准确地获取学习者的知识级别. 在课程推荐任务(Course Recommendation Task, CRT)中, 首先, 将学习者的知识级别、学习者的序列行为和学习者的性格根据特定的上下文进行自适应融合, 用以生成学习者的画像; 然后, 基于学习者的画像生成课程推荐列表. 在真实的教育相关数据集上的实验结果验证了提出的方法在点击率(Hit Ratio, HR)、归一化折损累计增益(Normalized Discounted Cumulative Gain, NDCG)、精确度(Precision)指标上的优越性, 即可以生成更加个性化的课程推荐.

关键词: 课程推荐, 知识追踪, 多任务学习, 性格, 自适应学习

Abstract:

Adaptive learning is an educational method that uses computer algorithms to coordinate interaction with learners, and provides customized learning resources and learning activities to address the unique needs of each learner. With the impact of COVID-19, adaptive learning has become increasingly important. One of the challenges with adaptive learning is how to provide personalized learning resources for learners—i.e., how to generate personalized recommendation for learners from a large set of learning resources. Existing methodologies mainly generate recommendations based on a learner’s knowledge level; however, this approach has some limitations. Firstly, when assessing a learner’s knowledge level, learners’ forgetting phenomenon has to date not been well modeled. Secondly, recommendations are generated separately from knowledge tracing tasks, ignoring the interconnectedness between these aspects. In addition, learners’ preferences for the type of learning resources and learning strategies is normally ignored if the knowledge level alone is used. To solve the aforementioned problems, this paper proposes a knowledge and personality incorporated multi-task learning framework (KPM) to boost course recommendations (i.e., the above-mentioned learning resources); the proposed method regards an enhanced knowledge tracing task (EKTT) as an auxiliary task to assist the primary course recommendation task (CRT). Specifically, using EKTT, we design a personalized forgetting controller to enhance the deep knowledge tracing model for accurately assessing a learner’s knowledge level. With CRT, we combine the learner’s knowledge level and sequential behavior with their personality adapted to the specific context to obtain learner’s profile; this data is subsequently used to generate a course recommendation list. Experimental results on real-world educational datasets demonstrate the superiority of our proposed method in terms of hit ratio (HR), normalized discounted cumulative gain (NDCG), and precision, indicating that our method can generate more personalized recommendations.

Key words: course recommendation, knowledge tracing, multi-task learning, personality, adaptive learning

中图分类号: