华东师范大学学报(自然科学版) ›› 2023, Vol. 2023 ›› Issue (1): 177-185.doi: 10.3969/j.issn.1000-5641.2023.01.018
收稿日期:
2022-06-29
接受日期:
2022-09-09
出版日期:
2023-01-25
发布日期:
2023-01-07
通讯作者:
李丽,裴昊
E-mail:lli@chem.ecnu.edu.cn;peihao@chem.ecnu.edu.cn
作者简介:
曹梦瑶, 女, 博士研究生, 研究方向为DNA计算
基金资助:
Mengyao CAO, Li LI*(), Hao PEI*()
Received:
2022-06-29
Accepted:
2022-09-09
Online:
2023-01-25
Published:
2023-01-07
Contact:
Li LI,Hao PEI
E-mail:lli@chem.ecnu.edu.cn;peihao@chem.ecnu.edu.cn
摘要:
核酸结构设计因简单的碱基配对法则而获得预测结构的能量支持, 且具备更强的折叠合成结构, 受到了广泛的关注. 然而, 核酸碱基的化学多样性缺乏, 使得核酸结构在功能上多样性比蛋白质弱, 因而限制了其在实际中的应用. 本文聚焦核酸分子工程, 尤其是对核酸结构以及分子间相互作用的研究; 基于核酸结构的空间可寻址性, 实现了多种材料在核酸结构上的位点可控的修饰; 基于对核酸分子序列的设计, 还实现了核酸分子间反应动力学参数的连续微调. 此外, 设计构建了合成分子化学反应网络、分子机器及核酸基生物材料, 并将这种绿色生物材料应用于生物分子识别、生物膜表面工程及生物催化等方向.
中图分类号:
曹梦瑶, 李丽, 裴昊. 基于合成核酸分子工程的生物医学应用[J]. 华东师范大学学报(自然科学版), 2023, 2023(1): 177-185.
Mengyao CAO, Li LI, Hao PEI. Biomedical applications of synthetic nucleic acid engineering[J]. Journal of East China Normal University(Natural Science), 2023, 2023(1): 177-185.
1 | LIU S, JIANG Q, WANG Y, et al. Biomedical applications of DNA-based molecular devices. Advanced Healthcare Materials, 2019, 8 (10): e1801658. |
2 | CHEN J, LUO Z, SUN C, et al. Research progress of DNA walker and its recent applications in biosensor. TrAC Trends in Analytical Chemistry, 2019, 120, 115626. |
3 | PAYNE R J, WINSSINGER N. Editorial overview: Synthetic biomolecules. Current Opinion in Chemical Biology, 2018, 46, A3- A4. |
4 | ZHANG D Y, SEELIG G. Dynamic DNA nanotechnology using strand-displacement reactions. Nature Chemistry, 2011, 3 (2): 103- 113. |
5 | SEEMAN N C, SLEIMAN H F. DNA nanotechnology. Nature Reviews Materials, 2017, 3 (1): 1- 23. |
6 | HUANG P, WANG J, JIAO L, et al. A “time-frozen” technique in microchannel used for the thermodynamic studies of DNA origami. Biosensors and Bioelectronics, 2019, 131, 224- 231. |
7 | DELUCA M, SHI Z, CASTRO C E, et al. Dynamic DNA nanotechnology: Toward functional nanoscale devices. Nanoscale Horizons, 2020, 5 (2): 182- 201. |
8 | MAN T, JI W, LIU X, et al. Chiral metamolecules with active plasmonic transition. ACS Nano, 2019, 13 (4): 4826- 4833. |
9 | ZHU D, SONG P, SHEN J, et al. Polya-mediated DNA assembly on gold nanoparticles for thermodynamically favorable and rapid hybridization analysis. Analytical Chemistry, 2016, 88 (9): 4949- 4954. |
10 | SUN W, JI W, HALL J M, et al. Self-assembled DNA nanoclews for the efficient delivery of CRISPR–Cas9 for genome editing. Angewandte Chemie-International Edition, 2015, 54 (41): 12029- 12033. |
11 | CAO M, SUN Y, XIAO M, et al. Multivalent aptamer-modified DNA origami as drug delivery system for targeted cancer therapy. Chemical Research in Chinese Universities, 2019, 36 (2): 254- 260. |
12 | WANG P, XIAO M, PEI H, et al. Biomineralized DNA nanospheres by metal organic framework for enhanced chemodynamic therapy. Chemical Engineering Journal, 2021, 415, 129036. |
13 | XIAO M, LAI W, WANG F, et al. Programming drug delivery kinetics for active burst release with DNA toehold switches. Journal of the American Chemical Society, 2019, 141 (51): 20354- 20364. |
14 | JI W, LI X, XIAO M, et al. DNA-scaffolded disulfide redox network for programming drug-delivery kinetics. Chemistry-A European Journal, 2021, 27 (34): 8745- 8752. |
15 | LOPEZ R, WANG R, SEELIG G. A molecular multi-gene classifier for disease diagnostics. Nature Chemistry, 2018, 10 (7): 746- 754. |
16 | ZHANG C, ZHAO Y, XU X, et al. Cancer diagnosis with DNA molecular computation. Nature Nanotechnology, 2020, 15 (8): 709- 715. |
17 | 张浩千, 娄春波. 合成生物学的发展、挑战及应对. 科学与社会, 2014, 4 (4): 26- 33. |
18 | KALLENBACH N R, MA R I, SEEMAN N C. An immobile nucleic acid junction constructed from oligonucleotides. Nature, 1983, 305 (5937): 829- 831. |
19 | ROTHEMUND P W. Folding DNA to create nanoscale shapes and patterns. Nature, 2006, 440 (7082): 297- 302. |
20 | TIKHOMIROV G, PETERSEN P, QIAN L. Fractal assembly of micrometre-scale DNA origami arrays with arbitrary patterns. Nature, 2017, 552 (7683): 67- 71. |
21 | ANDERSEN E S, DONG M, NIELSEN M M, et al. Self-assembly of a nanoscale DNA box with a controllable lid. Nature, 2009, 459 (7243): 73- 76. |
22 | DIETZ H, DOUGLAS S M, SHIH W M. Folding DNA into twisted and curved nanoscale shapes. Science, 2009, 325 (5941): 725- 730. |
23 | LIEDL T, HOGBERG B, TYTELL J, et al. Self-assembly of three-dimensional prestressed tensegrity structures from DNA. Nature Nanotechnology, 2010, 5 (7): 520- 524. |
24 | HAN D, PAL S, NANGREAVE J, et al. DNA origami with complex curvatures in three-dimensional space. Science, 2011, 332 (6027): 342- 346. |
25 | GERLING T, WAGENBAUER K F, NEUNER A M, et al. Dynamic DNA devices and assemblies formed by shape-complementary, non–base pairing 3D components. Science, 2015, 347 (6229): 1446- 1452. |
26 | 余紫荆, 肖明书, 裴昊, 等. 基于DNA折纸的酶级联催化用于低密度脂蛋白的电化学检测. 分析化学, 2022, 50 (6): 850- 858. |
27 | YU H, MAN T, JI W, et al. Controllable self-assembly of parallel gold nanorod clusters by DNA origami. Chinese Chemical Letters, 2019, 30 (1): 175- 178. |
28 | LAI W, REN L, TANG Q, et al. Programming chemical reaction networks using intramolecular conformational motions of DNA. ACS Nano, 2018, 12 (7): 7093- 7099. |
29 | LAI W, XIONG X, WANG F, et al. Nonlinear regulation of enzyme-free DNA circuitry with ultrasensitive switches. ACS Synthetic Biology, 2019, 8 (9): 2106- 2112. |
30 | XIONG X, ZHU T, ZHU Y, et al. Molecular convolutional neural networks with DNA regulatory circuits. Nature Machine Intelligence, 2022, (4): 625- 635. |
31 | XIONG X, XIAO M, LAI W, et al. Optochemical control of DNA-switching circuits for logic and probabilistic computation. Angewandte Chemie-International Edition, 2021, 60 (7): 3397- 3401. |
32 | TANG Q, LAI W, WANG P, et al. Multi-mode reconfigurable DNA-based chemical reaction circuits for soft matter computing and control. Angewandte Chemie-International Edition, 2021, 60 (27): 15013- 15019. |
33 | JI W, LI D, LAI W, et al. pH-operated triplex DNA device on MoS2 nanosheets . Langmuir, 2019, 35 (14): 5050- 5053. |
34 | DOUGLAS S M, BACHELET I, CHURCH G M J S. A logic-gated nanorobot for targeted transport of molecular payloads. Science, 2012, 335 (6070): 831- 834. |
35 | CHATTERJEE G, DALCHAU N, MUSCAT R A, et al. A spatially localized architecture for fast and modular DNA computing. Nature Nanotechnology, 2017, 12 (9): 920- 927. |
36 | THUBAGERE A J, LI W, JOHNSON R F, et al. A cargo-sorting DNA robot. Science, 2017, 357 (6356): 1095- 1096. |
37 | XIAO M, GAO L, CHANDRASEKARAN A R, et al. Bio-functional G-molecular hydrogels for accelerated wound healing. Materials Science and Engineering: C, 2019, 105, 110067. |
38 | MAN T, LAI W, ZHU C, et al. Perovskite mediated vibronic coupling of semiconducting SERS for biosensing. Advanced Functional Materials, 2022, 32 (32): 2201799. |
39 | TANG Q, PLANK T N, ZHU T, et al. Self-assembly of metallo-nucleoside hydrogels for injectable materials that promote wound closure. ACS Applied Materials & Interfaces, 2019, 11 (22): 19743- 19750. |
40 | WANG X, YAN L, YU Z, et al. Aptamer-functionalized fractal nanoplasmonics-assisted laser desorption/ionization mass spectrometry for metabolite detection. ChemPlusChem, 2022, 87 (1): e202100479. |
41 | SONG L, XIAO M, LAI W, et al. Intracellular logic computation with framework nucleic acid-based circuits for mRNA imaging. Chinese Journal of Chemistry, 2021, 39 (4): 947- 953. |
42 | WANG X, XIAO M, ZOU Y, et al. Fractal SERS nanoprobes for multiplexed quantitative gene profiling. Biosensors and Bioelectronics, 2020, 156, 112130. |
43 | YU H, XIAO M, LAI W, et al. A self-calibrating surface-enhanced Raman scattering-active system for bacterial phenotype detection. Analytical Chemistry, 2020, 92 (6): 4491- 4497. |
44 | LAI W, XIAO M, YANG H, et al. Circularized blocker-displacement amplification for multiplex detection of rare DNA variants. Chemical Communications, 2020, 56 (82): 12331- 12334. |
45 | MAN T, LAI W, XIAO M, et al. A versatile biomolecular detection platform based on photo-induced enhanced Raman spectroscopy. Biosensors and Bioelectronics, 2020, 147, 111742. |
46 | XIAO M, LAI W, MAN T, et al. Rationally engineered nucleic acid architectures for biosensing applications. Chemical Reviews, 2019, 119 (22): 11631- 11717. |
47 | SHEN J, LIANG L, XIAO M, et al. Fractal nanoplasmonic labels for supermultiplex imaging in single cells. Journal of the American Chemical Society, 2019, 141 (30): 11938- 11946. |
48 | SU Y, LI D, LIU B, et al. Rational design of framework nucleic acids for bioanalytical applications. ChemPlusChem, 2019, 84 (5): 512- 523. |
49 | QU X, XIAO M, LI F, et al. Framework nucleic acid-mediated pull-down microRNA detection with hybridization chain reaction amplification. ACS Applied Bio Materials, 2018, 1 (3): 859- 864. |
50 | 王飞, 钟睿博, 唐倩, 等. ATP 触发快速响应的线性DNA凝胶. 高分子学报, 2018, (5): 553- 558. |
51 | WANG X, LAI W, MAN T, et al. Bio-surface engineering with DNA scaffolds for theranostic applications. Nanofabrication, 2018, 4 (1): 1- 16. |
52 | ZHONG R, XIAO M, ZHU C, et al. Logic catalytic interconversion of G-molecular hydrogel. ACS Applied Materials & Interfaces, 2018, 10 (5): 4512- 4518. |
53 | XIAO M, QU X, LI L, et al. Ultrasensitive detection of metal ions with DNA nanostructure. Methods in Molecular Biology, 2018, 1811, 137- 149. |
54 | QU X, LI M, ZHANG H, et al. Real-time continuous identification of greenhouse plant pathogens based on recyclable microfluidic bioassay system. ACS Applied Materials & Interfaces, 2017, 9 (37): 31568- 31575. |
55 | QI L, XIAO M, WANG X, et al. DNA-encoded Raman-active anisotropic nanoparticles for microRNA detection. Analytical Chemistry, 2017, 89 (18): 9850- 9856. |
56 | QU X, YANG F, CHEN H, et al. Bubble-mediated ultrasensitive multiplex detection of metal ions in three-dimensional DNA nanostructure-encoded microchannels. ACS Applied Materials & Interfaces, 2017, 9 (19): 16026- 16034. |
57 | QU X, ZHANG H, CHEN H, et al. Convection-driven pull-down assays in nanoliter droplets using scaffolded aptamers. Analytical Chemistry, 2017, 89 (6): 3468- 3473. |
58 | CHEN L, CHAO J, QU X, et al. Probing cellular molecules with polyA-based engineered aptamer nanobeacon. ACS Applied Materials & Interfaces, 2017, 9 (9): 8014- 8020. |
59 | QI L, XIAO M, WANG F, et al. Poly-cytosine-mediated nanotags for SERS detection of Hg2+. Nanoscale, 2017, 9 (37): 14184- 14191. |
60 | 闫璐, 李晓丹, 肖明书, 等. 集成DNA分子机器的微针贴片用于细胞外三磷酸腺苷原位监测. 分析化学, 2022, 50 (4): 516- 524. |
61 | QU X, ZHU D, YAO G, et al. An exonuclease Ⅲ-powered, on-particle stochastic DNA walker. Angewandte Chemie-International Edition, 2017, 56 (7): 1855- 1858. |
62 | YANG H, XIAO M, LAI W, et al. Stochastic DNA dual-walkers for ultrafast colorimetric bacteria detection. Analytical chemistry, 2020, 92 (7): 4990- 4995. |
63 | XIAO M, MAN T, ZHU C, et al. MoS2 nanoprobe for microRNA quantification based on duplex-specific nuclease signal amplification . ACS Applied Materials & Interfaces, 2018, 10 (9): 7852- 7858. |
64 | XIAO M, CHANDRASEKARAN A R, JI W, et al. Affinity-modulated molecular beacons on MoS2 nanosheets for microRNA detection . ACS Applied Materials & Interfaces, 2018, 10 (42): 35794- 35800. |
65 | XIAO M, WANG X, LI L, et al. Stochastic RNA walkers for intracellular microRNA imaging. Analytical Chemistry, 2019, 91 (17): 11253- 11258. |
66 | XIAO M, ZOU K, LI L, et al. Stochastic DNA walkers in droplets for super-multiplexed bacterial phenotype detection. Angewandte Chemie International Edition, 2019, 58 (43): 15448- 15454. |
67 | WU Z, XIAO M, LAI W, et al. Nucleic acid-based cell surface engineering strategies and their applications. ACS Applied Bio Materials, 2022, 5 (5): 1901- 1915. |
68 | XIAO M, LAI W, WANG X, et al. DNA mediated self-assembly of multicellular microtissues [J]. Microphysiological Systems, 2018, 2(1). DOI: 10.21037/mps.2017.12.01. |
69 | QU X, WANG S, GE Z, et al. Programming cell adhesion for on-chip sequential boolean logic functions. Journal of the American Chemical Society, 2017, 139 (30): 10176- 10179. |
70 | XIAO M, LAI W, YU H, et al. Assembly pathway selection with DNA reaction circuits for programming multiple cell-cell interactions. Journal of the American Chemical Society, 2021, 143 (9): 3448- 3454. |
71 | XIAO M, LAI W, YAO X, et al. Programming receptor clustering with DNA probabilistic circuits for enhanced natural killer cell recognition. Angewandte Chemie-International Edition, 2022, 61 (28): e202203800. |
72 | LIN M, CHEN Y, ZHAO S, et al. A biomimetic approach for spatially controlled cell membrane engineering using fusogenic spherical nucleic acid. Angewandte Chemie-International Edition, 2022, 61 (1): e202111647. |
73 | ZHONG R, TANG Q, WANG S, et al. Self-assembly of enzyme-like nanofibrous G-molecular hydrogel for printed flexible electrochemical sensors. Advanced Materials, 2018, 30 (12): e1706887. |
74 | MAN T, XU C, LIU X Y, et al. Hierarchically encapsulating enzymes with multi-shelled metal-organic frameworks for tandem biocatalytic reactions. Nature Communcation, 2022, 13, 305. |
75 | ZHONG H, LO W S, MAN T, et al. Stabilizing DNAzymes through encapsulation in a metal-organic framework. Chemistry–A European Journal, 2020, 26 (57): 12931- 12935. |
76 | ZHOU L, GAO M, FU W, et al. Three-dimensional DNA tweezers serve as modular DNA intelligent machines for detection and regulation of intracellular microRNA. Science Advances, 2020, 6 (22): eabb0695. |
77 | CHAO J, LIU H, SU S, et al. Structural DNA nanotechnology for intelligent drug delivery. Small, 2014, 10 (22): 4626- 4635. |
[1] | 蔡文艳, 潘悦, 张琪伟, 田阳. 基于葫芦脲 [8] 的近红外有机超分子光热试剂的制备及其光热性能研究[J]. 华东师范大学学报(自然科学版), 2023, 2023(1): 186-193. |
[2] | 李仪, 张炎, 张雅婷, 何品刚, 王清江. 微萃取超高效液相色谱检测磺胺类药物的研究[J]. 华东师范大学学报(自然科学版), 2019, 2019(2): 156-163. |
[3] | 王冠, 唐菀融, 葛淑丽, 韩若冰, 王清江, 何品刚, 方禹之. 毛细管电泳安培检测在线富集分析生物胺研究[J]. 华东师范大学学报(自然科学版), 2016, 2016(1): 123-133. |
[4] | 王伟莉, 段雅乐, 刘 莎, 张 耀, 赵 政. HPLC-ESI-MS法测定大鼠脑组织中神经递质L/D-丝氨酸的含量[J]. 华东师范大学学报(自然科学版), 2013, 2013(6): 165-170. |
[5] | 朱金坤, 舒 露, 吴 敏, 王清江, 何品刚, 方禹之. 维生素B12的毛细管电泳---化学发光检测研究[J]. 华东师范大学学报(自然科学版), 2013, 2013(5): 96-101. |
[6] | 韩冰冰, 王翠翠, 李新军, 邹新琢. 强极性化合物DMC及其杂质的HILIC分离方法研究[J]. 华东师范大学学报(自然科学版), 2011, 2011(6): 132-138. |
[7] | 杨群;王怡林. 楚雄恐龙骨化石元素同步辐射XRF研究[J]. 华东师范大学学报(自然科学版), 2008, 2008(5): 110-115. |
[8] | 王莉清;张红燕; 赵振杰; 王清江; 何品刚. 氨基硅烷修饰NdFeB永磁微粒的研究[J]. 华东师范大学学报(自然科学版), 2008, 2008(4): 96-101. |
[9] | 周天舒;施国跃;吴 芳;方禹之. 毛细管电泳安培法测定班布特罗及其代谢物[J]. 华东师范大学学报(自然科学版), 2006, 2006(6): 47-52. |
[10] | 薛 腾;王 欢;罗仪文;张 丽;柳英姿;陆嘉星. 对硝基苯甲醚在Cu电极上的电化学还原行为研究[J]. 华东师范大学学报(自然科学版), 2006, 2006(4): 49-55. |
[11] | 徐 颖;杨 琳;叶晓燕;何品刚;方禹之. 运用交流阻抗技术直接监测DNA杂交[J]. 华东师范大学学报(自然科学版), 2006, 2006(4): 39-48. |
[12] | 耿成怀;楚清脆;叶建农. 毛细管区带电泳-电化学法检测洋葱中活性成分[J]. 华东师范大学学报(自然科学版), 2006, 2006(2): 13-17. |
[13] | 陈 相;王清江;丁 飞;吕 金;何品刚;方禹之. 毛细管电泳-安培法测定酵母菌中的RNA[J]. 华东师范大学学报(自然科学版), 2006, 2006(2): 7-12. |
[14] | 李惠霞;张其颖*;王浩月. 新显色剂DBS-MSA测定痕量铅的分光光度法研究(简报)[J]. 华东师范大学学报(自然科学版), 2005, 2005(4): 110-112. |
[15] | 周宇艳;;鲜跃仲;刘芳;胡艺;周丽绘;金利通. Au@SiO2修饰电极的制备及对Cyt c的直接电化学研究[J]. 华东师范大学学报(自然科学版), 2005, 2005(3): 48-52. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||