1 |
WANG Z, FU K, YE J P. Learning to estimate the travel time [C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2018: 858-866.
|
2 |
WANG D, ZHANG J B, CAO W, et al. When will you arrive? Estimating travel time based on deep neural networks [C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence and 30th Innovative Applications of Artificial Intelligence Conference and 8th AAAI Symposium on Educational Advances in Artificial Intelligence. AAAI, 2018: 2500-2507.
|
3 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS 2017). Red Hook, NY, United States: Curran Associates Inc., 2017: 6000-6010.
|
4 |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16 × 16 words: Transformers for image recognition at scale [EB/OL]. (2020-10-22)[2022-11-26]. https://arxiv.org/abs/2010.11929.
|
5 |
YING C X, CAI T, LUO S J, et al. Do transformers really perform bad for graph representation? [EB/OL]. (2021-11-24)[2021-11-26]. https://arxiv.org/abs/2106.05234.
|
6 |
DE SOUZA PEREIRA MOREIRA G, RABHI S, LEE J M, et al. Transformers4rec: Bridging the gap between nlp and sequential/session-based recommendation [C]// Proceedings of the 15th ACM Conference on Recommender Systems. ACM, 2021: 143-153.
|
7 |
WANG H J, TANG X F, KUO Y H, et al. A simple baseline for travel time estimation using large-scale trip data. ACM Transactions on Intelligent Systems and Technology (TIST), 2019, 10 (2): 19:1- 19:22.
doi: 10.1145/3293317
|
8 |
JINDAL I, QIN Z W, CHEN X W, et al. A unified neural network approach for estimating travel time and distance for a taxi trip [EB/OL]. (2017-10-12)[2021-11-26]. https://arxiv.org/pdf/1710.04350.pdf.
|
9 |
LI Y G, FU K, WANG Z, et al. Multi-task representation learning for travel time estimation [C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2018: 1695-1704.
|
10 |
OUNOUGHI C, YEFERNY T, YAHIA S B. ZED-TTE: Zone embedding and deep neural network based travel time estimation approach [C]// 2021 International Joint Conference on Neural Networks (IJCNN). IEEE, 2021. DOI: 10.1109/IJCNN52387.2021.9533456.
|
11 |
ASGHARI M, EMRICH T, DEMIRYUREK U, et al. Probabilistic estimation of link travel times in dynamic road networks [C]// Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems. ACM, 2015: Article number 47. DOI: http://dx.doi.org/10.1145/2820783.2820836.
|
12 |
JIA Z F, CHEN C, COIFMAN B, et al. The PeMS algorithms for accurate, real-time estimates of g-factors and speeds from single-loop detectors [C]// 2001 IEEE Intelligent Transportation Systems Proceedings. IEEE, 2001: 536-541. DOI: 10.1109/ITSC.2001.948715.
|
13 |
PETTY K F, BICKEL P, OSTLAND M, et al. Accurate estimation of travel times from single-loop detectors. Transportation Research Part A, 1998, 32 (1): 1- 17.
|
14 |
TANG J J, ZOU Y J, ASH J, et al. Travel time estimation using freeway point detector data based on evolving fuzzy neural inference system. PloS One, 2016, 11 (2): e0147263.
doi: 10.1371/journal.pone.0147263
|
15 |
JENELIUS E, KOUTSOPOULOS H N. Travel time estimation for urban road networks using low frequency probe vehicle data. Transportation Research Part B, 2013, 53 (4): 64- 81.
|
16 |
HUNTER T, HERRING R, ABBEEL P, et al. Path and travel time inference from GPS probe vehicle data [EB/OL]. (2009-01-29)[2022-11-25]. https://snap.stanford.edu/nipsgraphs2009/papers/hunter-paper.pdf.
|
17 |
WANG Y L, ZHENG Y, XUE Y X. Travel time estimation of a path using sparse trajectories [C]// Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2014: 25-34.
|
18 |
ALEXANDER-RAKHLIN. CNN-for-sentence-classification-in-Keras [EB/OL]. (2017-07-17)[2022-11-26]. https://github.com/alexander-rakhlin/CNN-for-Sentence-Classification-in-Keras.
|
19 |
HENG-TZE C, LEVENT K, JEREMIAH H, et al. Wide & deep learning for recommender systems [C]// Proceedings of the 1st Workshop on Deep Learning for Recommender Systems. ACM, 2016: 7-10.
|
20 |
FU K, MENG F L, YE J P, et al. CompactETA: A fast inference system for travel time prediction [C]// Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2020: 3337-3345.
|
21 |
FANG X M, HUANG J Z, WANG F, et al. ConSTGAT: Contextual spatial-temporal graph attention network for travel time estimation at Baidu maps [C]// Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2020: 2697-2705.
|
22 |
SUN Y, WANG Y, FU K, et al. FMA-ETA: Estimating travel time entirely based on FFN with attention [C]// ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2021: 3355-3359.
|
23 |
FANG X M, HUANG J Z, WANG F, et al. SSML: Self-supervised meta-learner for en route travel time estimation at Baidu maps [C]// Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. ACM, 2021: 2840-2848.
|
24 |
HONG H T, LIN Y C, YANG X Q, et al. HetETA: Heterogeneous information network embedding for estimating time of arrival [C]// Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2020: 2444-2454.
|
25 |
FU T Y, LEE W C. DeepIST: Deep image-based spatio-temporal network for travel time estimation [C]// Proceedings of the 28th ACM International Conference on Information and Knowledge Management. ACM, 2019: 69-78.
|
26 |
XU J, ZHANG Y, CHAO L, et al. STDR: A deep learning method for travel time estimation [C]// International Conference on Database Systems for Advanced Applications, DASFAA 2019, Lecture Notes in Computer Science, vol 11447. Cham: Springer, 2019: 156-172.
|
27 |
XIONG R B, YANG Y C, HE D, et al. On layer normalization in the transformer architecture [EB/OL]. (2020-06-29)[2021-11-26]. https://arxiv.org/abs/2002.04745.
|
28 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition [C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2016: 770-778.
|
29 |
LOSHCHILOV I, HUTTER F. Decoupled weight decay regularization [EB/OL]. (2019-01-04)[2021-11-26]. https://arxiv.org/abs/1711.05101v3.
|
30 |
KE G L, MENG Q, FINLEY T, et al. LightGBM: A highly efficient gradient boosting decision tree [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS 2017). Red Hook, NY, USA: Curran Associates Inc., 2017: 3149-3157.
|
31 |
GUO H F, TANG R M, YE Y M, et al. DeepFM: A factorization-machine based neural network for CTR prediction[C]// Proceedings of the 26th International Joint Conference on Artificial Intelligence. AAAI, 2017: 1725-1731.
|