1 |
LANDOVITZ L F, LEVINE A M, SCHREIBER W M.. Time-dependent harmonic oscillators. Physical Review A, 1979, 20 (3): 1162- 1168.
|
2 |
TONG Y, JIANG W C, WU P, et al.. Two-photon double ionization of helium by chirped few-cycle attosecond pulses: From nonsequential to sequential regime. Chinese Physics B, 2016, 25 (7): 073202.
|
3 |
KATAOKA F, NOGAMI Y, DIJK W V.. Simulation of atomic ionization following the α decay of the nucleus. Journal of Physics A, 2000, 33 (31): 5547- 5566.
|
4 |
DIJK W V, NOGAMI Y. Model study of bremsstrahlung in alpha decay [C]// Few-Body Problems in Physics’02. Vienna: Springer, 2003: 229-232.
|
5 |
CHEON T, TSUTSUI I, FÜLÖP T.. Quantum abacus. Physics Letter A, 2004, 330 (5): 338- 342.
|
6 |
GAO Y J, MAYFIELD J, LUO S T.. Numerical solutions of the time-dependent Schrödinger equation with position-dependent effective mass. Numerical Methods for Partial Differential Equations, 2023, 39 (4): 3222- 3245.
|
7 |
DIJK W V, TOYAMA F M.. Accurate numerical solutions of the time-dependent Schrödinger equation. Physical Review E, 2007, 75 (3): 036707.
|
8 |
DIJK W V.. Efficient explicit numerical solutions of the time-dependent Schrödinger equation. Physical Review E, 2022, 105 (2): 025303.
|
9 |
CAPLAN R M, GONZÁLEZ R C.. Numerical stability of explicit Runge-Kutta finite-difference schemes for the nonlinear Schrödinger equation. Applied Numerical Mathematics, 2013, 71, 24- 40.
|
10 |
BISWAS S, NANDI P, CHAKRABORTY B.. Emergence of a geometric phase shift in planar noncommutative quantum mechanics. Physical Review A, 2020, 102 (2): 022231.
|
11 |
LEWENSTEIN M, BALCOU P, IVANOV M Y, et al.. Theory of high-harmonic generation by low-frequency laser fields. Physical Review A, 1994, 49 (3): 2117- 2132.
|
12 |
彭永刚.. 含时Schrödinger方程求解在量子搜索算法设计中的应用. 大学物理, 2018, 37 (9): 17- 24.
|
13 |
MOYER C A.. Numerov extension of transparent boundary conditions for the Schrödinger equation in one dimension. American Journal of Physics, 2004, 72 (3): 351- 358.
|
14 |
GOLDBERG A, SCHEY H M, SCHWARTZ J L.. Computer-generated motion pictures of one-dimensional quantum-mechanical transmission and reflection phenomena. American Journal of Physics, 1967, 35 (3): 177- 186.
|
15 |
MAKOWSKI A J, DEMBIŃSKI S T.. Exactly solvable models with time-dependent boundary conditions. Physics Letters A, 1991, 154 (5/6): 217- 220.
|
16 |
PRESS W H, TEUKOLSKY S A, VETTERLING W T, et al. Numerical Recipes in Fortran 77: The Art of Scientific Computing[M]. 2nd ed. Cambridge: Cambridge University Press, 1992.
|