华东师范大学学报(自然科学版) ›› 2025, Vol. 2025 ›› Issue (3): 80-89.doi: 10.3969/j.issn.1000-5641.2025.03.010

• 物理学与电子学 • 上一篇    下一篇

基于核磁共振陀螺仪内嵌原子磁强计的三轴剩余磁场测量

余文彬, 徐信业*()   

  1. 华东师范大学 精密光谱科学与技术国家重点实验室, 上海 200241
  • 收稿日期:2024-11-10 出版日期:2025-05-25 发布日期:2025-05-28
  • 通讯作者: 徐信业 E-mail:xyxu@phy.ecnu.edu.cn

Three-axis residual-magnetic-field measurement based on atomic magnetometer embedded in nuclear magnetic resonance gyroscope

Wenbin YU, Xinye XU*()   

  1. State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
  • Received:2024-11-10 Online:2025-05-25 Published:2025-05-28
  • Contact: Xinye XU E-mail:xyxu@phy.ecnu.edu.cn

摘要:

为保证惰性气体原子核拉莫尔进动频率仅由施加的主磁场决定, 必须消除背景剩余磁场, 从而为获得高精度的核磁共振陀螺仪(nuclear magnetic resonance gyroscopes, NMRG)提供保障; 而对剩余磁场的精确测量成了实现这一目标的关键技术之一. 利用内嵌于核磁共振陀螺仪的碱金属原子磁强计, 实现了系统三轴剩余磁场的测量, 得到了相应实验条件下$ x,y,z $轴方向剩余磁场大小, 为最终实现陀螺仪中三轴剩余磁场的有效补偿创造了条件. 此外, 当在$ z $轴方向施加主磁场后, 由于碱金属原子与惰性气体原子发生自旋交换碰撞, 惰性气体原子会极化产生沿$ z $轴方向的等效磁场, 通过利用内嵌原子磁强计可测得该等效磁场. 这将为分析气室内碱金属原子与惰性气体原子自旋交换碰撞、获取费米接触相互作用增强因子等提供重要信息.

关键词: 核磁共振陀螺仪, 磁强计, 剩余磁场, 极化等效磁场

Abstract:

To ensure that the Larmor precession frequency of noble gas nuclei is solely determined by the applied main magnetic field, one must eliminate the residual background magnetic field, thereby providing the foundation for achieving high-precision nuclear magnetic resonance gyroscopes (NMRGs). Hence, accurate measurement of the residual magnetic field is critical for realizing this objective. In this study, the three-axis residual magnetic field is measured using the alkali-metal atomic magnetometer embedded within the NMRG system. Under specific experimental conditions, the magnitudes of the residual magnetic field in the x, y, and z axes are determined, respectively, which create the conditions necessary for effective three-axis residual field compensation in the gyroscope. Furthermore, when the main magnetic field is applied along the z-axis, the noble gas atoms are polarized due to spin-exchange collisions with alkali-metal atoms, thus generating an equivalent magnetic field along the z-axis. This equivalent magnetic field can be measured by using the embedded atomic magnetometer. These findings provide essential insights into spin-exchange collisions between alkali-metal and noble gas atoms, thereby enabling an analysis of the Fermi-contact-interaction enhancement factor and other critical parameters within the cell.

Key words: nuclear magnetic resonance gyroscope(NMRG), magnetometer, residual magnetic field, polarized equivalent magnetic field

中图分类号: