计算机科学与技术

如何客观评测内存数据库的性能

  • 康强强 ,
  • 金澈清 ,
  • 张召 ,
  • 胡华梁 ,
  • 周傲英
展开
  • 1. 华东师范大学 软件学院 数据科学与工程研究院,上海 200062;
    2. 浙江理工大学 经济管理学院,杭州 310033

网络出版日期: 2014-11-27

基金资助

国家自然科学基金(61370101);上海市教委创新项目(14ZZ045);上海市自然科学基金(14ZR1412600)

How to evaluate inmemory database objectively

  • KANG Qiang-Qiang ,
  • JIN Che-Qing ,
  • ZHANG Zhao ,
  • HU Hua-Liang ,
  • ZHOU Ao-Ying
Expand
  • 1. Institute for Data Science and Engineering, Software Engineering Institute, East China Normal University, Shanghai 200062, China;
    2. School of Economics and Management, Zhejiang Scitech University, Hangzhou 310033, China

Online published: 2014-11-27

摘要

在过去的10年间,随着硬件技术不断发展,内存价格越来越低,许多计算机系统均布置了大容量内存.数据库系统开发商和研究人员认识到这一趋势,并开发出多款内存数据库产品,其特点在于先将数据装载到内存之中,再执行相应的数据管理任务.随着内存数据库的出现,如何客观、公正地评测它的性能显得愈发重要.尽管当前不乏关于关系型数据库系统的评测基准,例如威斯康星测试基准和TPCX系列等,但是这些基准并未充分考虑内存数据库的重要特性,因此不适合评测内存数据库.本文提出了一种面向内存数据库的评测基准(InMemBench),与传统的关系数据库基准显著不同,它综合考虑了内存数据库特有的数据预取过程、物理组织方式和压缩能力等方面的重要特点.最后,本文还通过新基准比较了4款内存数据库的性能.

本文引用格式

康强强 , 金澈清 , 张召 , 胡华梁 , 周傲英 . 如何客观评测内存数据库的性能[J]. 华东师范大学学报(自然科学版), 2014 , 2014(5) : 320 -329 . DOI: 10.3969/j.issn.10005641.2014.05.029

Abstract

The hardware technology continues to develop in the past decade, and the price of memory gets lower so that many computer systems tend to deployhugesize memory. To fulfill this benefit, the researchers also developed several inmemory databases (IMDB) that execute workloads after preloading the whole data into memory. The bloom of various inmemory databases shows the necessity of testing and evaluating their performance objectively and fairly. Although the existing database benchmarks have shown great success during the development of the database technologies, including Wisconsin benchmark, TPCX series, and so on, such work cannot be applied straightforwardly due to the lack of consideration of several unique characteristics of inmemory databases. In this article, we propose a novel benchmark, called InMemBench, to test and evaluate the performance of an inmemory database objectively and fairly. Different from traditional database benchmarks, we take special consideration of startup, data organization, and data compression. Moreover, we conduct extensive experiments to illustrate the effectiveness and efficiency of our proposal.
文章导航

/