计算机科学

基于QPSO算法的OSPF多约束路由研究

  • 江家宝 ,
  • 郑尚志
展开
  • 巢湖学院 计算机与信息工程学院,安徽 巢湖238000
江家宝,男,硕士研究生,研究方向为模式识别与智能控制、计算机网络. E-mail: jiangjiabao@139.com.

收稿日期: 2014-08-26

  网络出版日期: 2015-05-28

基金资助

安徽省高等教育振兴计划项目(2013zytz063)

Research on OSPF multi constraint routing based on QPSO algorithm

  • JIANG Jia-Bao ,
  • ZHENG Shang-Zhi
Expand

Received date: 2014-08-26

  Online published: 2015-05-28

摘要

利用传统的SPF算法解决OSPF网络路由难题时,由于没有考虑多约束条件和有效利用次路径,一旦最优路径发生拥塞,网络传输性能会急剧降低.文中将QPSO算法应用于OSPF网络路由规划,利用多约束条件并结合OSPF网络多种路由参数的特性,重点对有效地改善网络局部拥塞和快速求得全局最佳路由及若干次路由算法进行探究,并利用仿真数据对所提出的改进算法进行验证.结果表明在解决OSPF网络路由规划问题中,网路传输性能,文中所提出的算法比传统的遗传算法和SPF算法得到较好的改善.

本文引用格式

江家宝 , 郑尚志 . 基于QPSO算法的OSPF多约束路由研究[J]. 华东师范大学学报(自然科学版), 2015 , 2015(3) : 91 -97 . DOI: 10.3969/j.issn.1000-5641.2015.03.011

Abstract

he OSPF network routing problems were solved by the use of the traditional SPF algorithm. Due to not considering the multiconstraint conditions and the effective use of secondary path, once the optimal path occurs to congestion, the network transmission performance will be decreased dramatically. In this paper, the QPSO algorithm was applied to the OSPF network routing planning, used by multiconstraint conditions and combined by the characteristics of OSPF network and a variety of routing parameters, which was effectively improved by the local network congestion and obtained the global optimum fast routing and routing algorithm, and verified the improved algorithm by using the simulation data. The results showed that the proposed algorithm got better improvement than the genetic algorithm and the traditional SPF algorithm in the solution of route planning problem and the network transmission performance.

Key words: QPSO; IGP; routing; Qos

参考文献

[1]王小明,卢俊岭,李英姝,等.模糊随机环境下的无线传感器网络多约束多路径路由[J].计算机学报,2011(5).

[2]SUN J, XU W B.A global search strategy of quantumbehaved particle swarm optimization [C]//IEEE Conference on Cybernetics and Intelligent Systems.2004:111116.

[3]SUN J,FENG B,XU W B.Particle swarm optimization with particles having quantum behavior[C]//Proceedings of 2004 Congress on Evolutionary Computation. 2004:325331.

[4]魏娟.基于遗传算法的OSPF 路由研究[J].科技咨询,2013(22).

[5]WANG X M, ZHANG Z,RAN C S. A rerouting strategy in lowearth orbit Qos sattllite networks[J]. Journal of Beijing University of Postsand Telecommunication,2005,28(1):3034.

[6]SCHMITT L M. Theory of genetic algorithms Ⅱ[J]. Theoretical Computer Science, 2004: 181231.
文章导航

/