化学

MoS2的电化学表征与探究(英)

  • 张贤惠 ,
  • 陈珍莲 ,
  • 陈晓波
展开
  • 中国科学院 宁波材料技术与工程研究所, 浙江 宁波315201
张贤惠, 女, 硕士研究生, 研究方向为锂离子电池. E-mail:zhangxianhui@nimte.ac.cn.

收稿日期: 2014-03-27

  网络出版日期: 2015-05-28

基金资助

国家自然科学基金(11174301, 21303235); 973计划(2012CB722700);863计划(2013AA050901); 宁波市创新团队(2011B82005)

Characterization of and insight into the electrochemistry of MoS2

  • ZHANG Xian-Hui ,
  • CHEN Zhen-Lian ,
  • CHEN Xiao-Bo
Expand

Received date: 2014-03-27

  Online published: 2015-05-28

摘要

结合实验和第一性原理计算,对MoS2首次充放电过程中的第一阶段相变的结构变化进行了研究.研究表明1.1V处的电压平台对应于锂离子嵌入量0.56,
锂离子都是嵌入2H相的八面体空位,与计算出的平台电压值及MoS2的相稳定特性都相吻合.但当锂离子嵌入量超过1.0时, 晶体结构向无定形结构转变,导致后续充电过程中不出现平台特征. 此外,通过对比MoS2和LiCoO2 的嵌入能量项,本文探究了决定正极与负极材料本征电压差的物理机制.}

本文引用格式

张贤惠 , 陈珍莲 , 陈晓波 . MoS2的电化学表征与探究(英)[J]. 华东师范大学学报(自然科学版), 2015 , 2015(3) : 105 -115 . DOI: 10.3969/j.issn.1000-5641.2015.03.013

Abstract

By combining experimental methods with first-principles calculations this article reports the determination of the structural characters of MoS2 in the first discharging and charging cycling, where the first stage phase transformation occurs.The significant voltage plateau at 1.1 V is attributed to lithium
insertion on octahedral vacancy sites of 2H-Lix MoS2 with lithium concentration (x)up to 0.56, which corresponds with the calculated voltage and phase stability of MoS$_{2}$. However, the ensuing amorphization for $x$ over 1.0 immediately removes the plateau character from the charging curve. Furthermore, we offer a comparison to LiCoO2 to investigate the physical mechanism of the anode and cathode voltaic

参考文献

[1]ZHOU X, WAN L J, GUO Y G. Synthesis of MoS$_{2$ nanosheet--graphene

nanosheet hybrid materials for stable lithium storage[J]. Chemical

Communications, 2013, 49(18): 1838.
[2] SATHISH M, TOMAI T, HONMA I. Graphene anchored with Fe$_3$O$_4$ nanoparticles

as anode for enhanced Li-ion storage[J]. Journal of Power Sources,

2012, 217: 85-91.
[3] CHEN S, WANG Y, AHN H, et al. Microwave hydrothermal synthesis of high

performance tin-graphene nanocomposites for lithium ion batteries

[J]. Journal of Power Sources, 2012, 216: 22-27.
[4] PARK S K, YU S H, WOO S, et al. A facile and green strategy for the

synthesis of MoS$_2$ nanospheres with excellent Li-ion storage

properties [J]. Cryst Eng Comm, 2012, 14(24): 8323.
[5] WINTER M, BRODD R J. What are batteries, fuel cells, and

supercapacitors [J]. Chem Rev 2004, 104: 4245-4269.
[6] CHANG K, CHEN W. In situ synthesis of MoS$_{2$/graphene nanosheet

composites with extraordinarily high electrochemical performance for

lithium ion batteries [J]. Chemical Communications, 2011, 47(14):

4252.
[7] BRIVIO J, ALEXANDER D T L, KIS A. Ripples and layers in ultrathin

MoS$_{2$ embranes [J]. Nano Letters, 2011, 11(12): 5148-5153.
[8] TENNE R, MARGULIS L, GENUT M, et al. Polyhedral and cylindrical

structures of tungsten disulphide [J]. Letters to Nature, 1992, 360:

4-6.
[9] RAMAKRISHNAMATTE H S S, GOMATHI A, MANNA A K, et al. MoS$_{2$ and

WS$_{2$ Analogues of graphene [J]. Angewandte Chemie, 2010,

122(24): 4153-4156.
[10] WHITTINGHAM M S, GAMBLE JR F R. The lithium intercalates of the

transition metal dichalcogenides [J]. Materials Research Bulletin,

1975, 10(5): 363-371.
[11] WHITTINGHAM M S. The role of ternary phases in cathode reactions [J].

Journal of The Electrochemical Society, 1976, 123(3): 315-320.
[12] DINO T, CHRISTIAN P, JAEGERMANN W. Origin of the

electrochemical potential in intercalation electrodes [J]. J Phys

Chem B, 2004, 108: 6093-6099.
[13] WANG Q, LI J. Facilitated lithium storage in MoS$_2$ overlayers supported

on coaxial carbon nanotubes [J]. J Phys Chem C, 2007, 111:

1675-1682.
[14] DING S, ZHANG D, CHEN J S, et al. Facile synthesis of hierarchical

MoS$_{2$ microspheres composed of few-layered nanosheets and their

lithium storage properties [J]. Nanoscale, 2012, 4(1): 95.
[15] KWON J H, AHN H J, JEON M S, et al. The electrochemical properties of

Li/TEGDME/MoS$_{2$ cells using multi-wall carbon nanotubes as a

conducting agent [J]. Research on Chemical Intermediates, 2010,

36(6/7): 749-759.
[16] STEPHENSON T, LI Z, OLSEN B, et al. Lithium ion battery applications of

molybdenum disulfide (MoS$_{2)$ nanocomposites [J]. Energy {\&

Environmental Science, 2014, 7(1): 209.
[17] CATHERINE M. ZELENSKI, DORHOUT P K. Template synthesis of

near-monodisperse [J]. J Am Chem Soc 1998, 120: 734-742.
[18] XIANHUI CHEN, FAN R. Low-temperature hydrothermal synthesis of

transition [J]. Chem Mater, 2001, 13: 802 -805.
[19] DRESSELHAUS M S, THOMAS I L. Alternative energy technologies [J].

Nature, 2001, 414(6861): 332-337.
[20] CHANG K, CHEN W X, MA L, et al. Graphene-like MoS$_2$/amorphous

carbon composites with high capacity and excellent stability as

anode materials for lithium ion batteries [J]. Journal of Materials

Chemistry, 2011, 21(17): 6251.
[21] YANG L, WANG S, MAO J, et al. Hierarchical MoS$_{2$/polyaniline

nanowires with excellent electrochemical performance for lithium-ion

batteries [J]. Advanced Materials, 2013, 25(8): 1180-1184.
[22] MAP Y, HAERING R R. Structural destabilization induced by lithium

intercalation in MoS$_{2$ andrelated compounds [J]. Canadian

Journal of Physics, 1983, 61: 76-84
[23] DU G, GUO Z, WANG S, et al. Superior stability and high capacity of

restacked molybdenum disulfide as anode material for lithium ion

batteries [J]. Chemical Communications, 2010, 46(7): 1106.
[24] GORDON R A, YANG D, CROZIER E D, et al. Structures of exfoliated single

layers of WS$_{2$, MoS$_{2$, and MoSe$_{2$ in aqueous suspension

[J]. Physical Review B, 2002, 65(12): 125407.
[25] CHEN X, CHEN Z, LI J. Critical electronic structures controlling phase

transitions induced by lithium ion intercalation in molybdenum

disulphide [J]. Chinese Science Bulletin, 2013, 58(14): 1632-1641.
[26] CHEN X, HE J, SRIVASTAVA D, et al. Electrochemical cycling

reversibility of LiMoS$_{2$ using first-principles calculations

[J]. Applied Physics Letters, 2012, 100(26): 263901.
[27] JOHN P, KIERON B, ERNZERHOF M. Generalized gradient

approximation made simple [J]. Phys Rev Lett, 1996, 77: 3865-3868.
[28] KRESSE G, HAFNER J. Ab initio molecular-dynamics simulation of the

liquid-metal-amorphous-semiconductor transition in germanium [J].

Physical Review B, 1994, 49(20): 251-269.
[29] KRESSE G, FURTHMULLER J. Efficient iterative schemes for ab initio

total-energy calculations using a plane-wave basis set [J]. Physical

Review B, 1996, 54(16): 169-186.
[30] BLOCHL P E. Projector augmented-wave method [J]. Physical Review B,

1994, 50(24): 953-979.
[31] GRIMME S. Semiempirical GGA-type density functional constructed with a

long-range dispersion correction [J]. Journal of Computational

Chemistry, 2006, 27(15): 1787-1799.
[32] CHEN Z, LI J, ZHANG Z. First principles investigation of electronic

structure change and energy transfer by redox in inverse spinel

cathodes LiNiVO$_{4$ and LiCoVO$_{4$ [J]. Journal of Materials

Chemistry, 2012, 22(36): 18968.
[33] NEUGEBAUER J, SCHEFFLER M. Adsorbate-substrate and adsorbate-adsorbate

interactions of Na and K adlayers on Al(111) [J]. Physical Review B,

1992, 46(24): 16067-16080.
[34] MAKOV G, PAYNE M. Periodic boundary conditions in ab initio

calculations [J]. Physical Review B, 1995, 51(7): 4014-4022.
[35] ZHANG C, WU H B, GUO Z, et al. Facile synthesis of carbon-coated

MoS$_{2$ nanorods with enhanced lithium storage properties [J].

Electrochemistry Communications, 2012, 20: 7-10.
[36] HWANG H, KIM H, CHO J. MoS$_{2$ nanoplates consisting of disordered

graphene-like layers for high rate lithium battery anode materials

[J]. Nano Letters, 2011, 11(11): 4826-4830.
[37] DAS S K, MALLAVAJULA R, JAYAPRAKASH N, et al. Self-assembled

MoS$_{2$-carbon nanostructures: influence of nanostructuring and

carbon on lithium battery performance [J]. Journal of Materials

Chemistry, 2012, 22(26): 12988.
[38] FENG C, MA J, LI H, et al. Synthesis of molybdenum disulfide

(MoS$_{2)$ for lithium ion battery applications [J]. Materials

Research Bulletin, 2009, 44(9): 1811-1815.
[39] FANG X, HUA C, GUO X, et al. Lithium storage in commercial MoS$_{2$ in

different potential ranges [J]. Electrochimica Acta, 2012, 81:

155-160.
[40] LIU C, YU Z, NEFF D, et al. Graphene-based supercapacitor with an

ultrahigh energy density [J]. Nano Letters, 2010, 10(12): 4863-4868.
[41] GOODENOUGH J B, KIM Y. Challenges for rechargeable li batteries [J].

Chemistry of Materials, 2010, 22(3): 587-603.
[42] CHEN J, TAO Z L, SUO L. Lithium intercalation in

open-ended TiS$_{2 $ nano-tubes [J]. Angewandte Chemie, 2003,

115(19): 2197-2201.
[43] JULIEN C M. Lithium intercalated compounds charge transfer and related

properties [J]. Materials Science and Engineering R, 2003, 40:

47-102.
[44] DAHN J R, ZHENG T, LIU Y, et al. Mechanisms for lithium insertion in

carbonaceous materials [J]. Science, 1995, 270(5236): 590-593.
文章导航

/