[1]ZHOU X, WAN L J, GUO Y G. Synthesis of MoS$_{2$ nanosheet--graphene
nanosheet hybrid materials for stable lithium storage[J]. Chemical
Communications, 2013, 49(18): 1838.
[2] SATHISH M, TOMAI T, HONMA I. Graphene anchored with Fe$_3$O$_4$ nanoparticles
as anode for enhanced Li-ion storage[J]. Journal of Power Sources,
2012, 217: 85-91.
[3] CHEN S, WANG Y, AHN H, et al. Microwave hydrothermal synthesis of high
performance tin-graphene nanocomposites for lithium ion batteries
[J]. Journal of Power Sources, 2012, 216: 22-27.
[4] PARK S K, YU S H, WOO S, et al. A facile and green strategy for the
synthesis of MoS$_2$ nanospheres with excellent Li-ion storage
properties [J]. Cryst Eng Comm, 2012, 14(24): 8323.
[5] WINTER M, BRODD R J. What are batteries, fuel cells, and
supercapacitors [J]. Chem Rev 2004, 104: 4245-4269.
[6] CHANG K, CHEN W. In situ synthesis of MoS$_{2$/graphene nanosheet
composites with extraordinarily high electrochemical performance for
lithium ion batteries [J]. Chemical Communications, 2011, 47(14):
4252.
[7] BRIVIO J, ALEXANDER D T L, KIS A. Ripples and layers in ultrathin
MoS$_{2$ embranes [J]. Nano Letters, 2011, 11(12): 5148-5153.
[8] TENNE R, MARGULIS L, GENUT M, et al. Polyhedral and cylindrical
structures of tungsten disulphide [J]. Letters to Nature, 1992, 360:
4-6.
[9] RAMAKRISHNAMATTE H S S, GOMATHI A, MANNA A K, et al. MoS$_{2$ and
WS$_{2$ Analogues of graphene [J]. Angewandte Chemie, 2010,
122(24): 4153-4156.
[10] WHITTINGHAM M S, GAMBLE JR F R. The lithium intercalates of the
transition metal dichalcogenides [J]. Materials Research Bulletin,
1975, 10(5): 363-371.
[11] WHITTINGHAM M S. The role of ternary phases in cathode reactions [J].
Journal of The Electrochemical Society, 1976, 123(3): 315-320.
[12] DINO T, CHRISTIAN P, JAEGERMANN W. Origin of the
electrochemical potential in intercalation electrodes [J]. J Phys
Chem B, 2004, 108: 6093-6099.
[13] WANG Q, LI J. Facilitated lithium storage in MoS$_2$ overlayers supported
on coaxial carbon nanotubes [J]. J Phys Chem C, 2007, 111:
1675-1682.
[14] DING S, ZHANG D, CHEN J S, et al. Facile synthesis of hierarchical
MoS$_{2$ microspheres composed of few-layered nanosheets and their
lithium storage properties [J]. Nanoscale, 2012, 4(1): 95.
[15] KWON J H, AHN H J, JEON M S, et al. The electrochemical properties of
Li/TEGDME/MoS$_{2$ cells using multi-wall carbon nanotubes as a
conducting agent [J]. Research on Chemical Intermediates, 2010,
36(6/7): 749-759.
[16] STEPHENSON T, LI Z, OLSEN B, et al. Lithium ion battery applications of
molybdenum disulfide (MoS$_{2)$ nanocomposites [J]. Energy {\&
Environmental Science, 2014, 7(1): 209.
[17] CATHERINE M. ZELENSKI, DORHOUT P K. Template synthesis of
near-monodisperse [J]. J Am Chem Soc 1998, 120: 734-742.
[18] XIANHUI CHEN, FAN R. Low-temperature hydrothermal synthesis of
transition [J]. Chem Mater, 2001, 13: 802 -805.
[19] DRESSELHAUS M S, THOMAS I L. Alternative energy technologies [J].
Nature, 2001, 414(6861): 332-337.
[20] CHANG K, CHEN W X, MA L, et al. Graphene-like MoS$_2$/amorphous
carbon composites with high capacity and excellent stability as
anode materials for lithium ion batteries [J]. Journal of Materials
Chemistry, 2011, 21(17): 6251.
[21] YANG L, WANG S, MAO J, et al. Hierarchical MoS$_{2$/polyaniline
nanowires with excellent electrochemical performance for lithium-ion
batteries [J]. Advanced Materials, 2013, 25(8): 1180-1184.
[22] MAP Y, HAERING R R. Structural destabilization induced by lithium
intercalation in MoS$_{2$ andrelated compounds [J]. Canadian
Journal of Physics, 1983, 61: 76-84
[23] DU G, GUO Z, WANG S, et al. Superior stability and high capacity of
restacked molybdenum disulfide as anode material for lithium ion
batteries [J]. Chemical Communications, 2010, 46(7): 1106.
[24] GORDON R A, YANG D, CROZIER E D, et al. Structures of exfoliated single
layers of WS$_{2$, MoS$_{2$, and MoSe$_{2$ in aqueous suspension
[J]. Physical Review B, 2002, 65(12): 125407.
[25] CHEN X, CHEN Z, LI J. Critical electronic structures controlling phase
transitions induced by lithium ion intercalation in molybdenum
disulphide [J]. Chinese Science Bulletin, 2013, 58(14): 1632-1641.
[26] CHEN X, HE J, SRIVASTAVA D, et al. Electrochemical cycling
reversibility of LiMoS$_{2$ using first-principles calculations
[J]. Applied Physics Letters, 2012, 100(26): 263901.
[27] JOHN P, KIERON B, ERNZERHOF M. Generalized gradient
approximation made simple [J]. Phys Rev Lett, 1996, 77: 3865-3868.
[28] KRESSE G, HAFNER J. Ab initio molecular-dynamics simulation of the
liquid-metal-amorphous-semiconductor transition in germanium [J].
Physical Review B, 1994, 49(20): 251-269.
[29] KRESSE G, FURTHMULLER J. Efficient iterative schemes for ab initio
total-energy calculations using a plane-wave basis set [J]. Physical
Review B, 1996, 54(16): 169-186.
[30] BLOCHL P E. Projector augmented-wave method [J]. Physical Review B,
1994, 50(24): 953-979.
[31] GRIMME S. Semiempirical GGA-type density functional constructed with a
long-range dispersion correction [J]. Journal of Computational
Chemistry, 2006, 27(15): 1787-1799.
[32] CHEN Z, LI J, ZHANG Z. First principles investigation of electronic
structure change and energy transfer by redox in inverse spinel
cathodes LiNiVO$_{4$ and LiCoVO$_{4$ [J]. Journal of Materials
Chemistry, 2012, 22(36): 18968.
[33] NEUGEBAUER J, SCHEFFLER M. Adsorbate-substrate and adsorbate-adsorbate
interactions of Na and K adlayers on Al(111) [J]. Physical Review B,
1992, 46(24): 16067-16080.
[34] MAKOV G, PAYNE M. Periodic boundary conditions in ab initio
calculations [J]. Physical Review B, 1995, 51(7): 4014-4022.
[35] ZHANG C, WU H B, GUO Z, et al. Facile synthesis of carbon-coated
MoS$_{2$ nanorods with enhanced lithium storage properties [J].
Electrochemistry Communications, 2012, 20: 7-10.
[36] HWANG H, KIM H, CHO J. MoS$_{2$ nanoplates consisting of disordered
graphene-like layers for high rate lithium battery anode materials
[J]. Nano Letters, 2011, 11(11): 4826-4830.
[37] DAS S K, MALLAVAJULA R, JAYAPRAKASH N, et al. Self-assembled
MoS$_{2$-carbon nanostructures: influence of nanostructuring and
carbon on lithium battery performance [J]. Journal of Materials
Chemistry, 2012, 22(26): 12988.
[38] FENG C, MA J, LI H, et al. Synthesis of molybdenum disulfide
(MoS$_{2)$ for lithium ion battery applications [J]. Materials
Research Bulletin, 2009, 44(9): 1811-1815.
[39] FANG X, HUA C, GUO X, et al. Lithium storage in commercial MoS$_{2$ in
different potential ranges [J]. Electrochimica Acta, 2012, 81:
155-160.
[40] LIU C, YU Z, NEFF D, et al. Graphene-based supercapacitor with an
ultrahigh energy density [J]. Nano Letters, 2010, 10(12): 4863-4868.
[41] GOODENOUGH J B, KIM Y. Challenges for rechargeable li batteries [J].
Chemistry of Materials, 2010, 22(3): 587-603.
[42] CHEN J, TAO Z L, SUO L. Lithium intercalation in
open-ended TiS$_{2 $ nano-tubes [J]. Angewandte Chemie, 2003,
115(19): 2197-2201.
[43] JULIEN C M. Lithium intercalated compounds charge transfer and related
properties [J]. Materials Science and Engineering R, 2003, 40:
47-102.
[44] DAHN J R, ZHENG T, LIU Y, et al. Mechanisms for lithium insertion in
carbonaceous materials [J]. Science, 1995, 270(5236): 590-593.