地理学

地下淡水驱替咸水过程中水文地球化学作用的试验研究

  • 邢立亭 ,
  • 王立艳 ,
  • 李常锁 ,
  • 徐旻天
展开
  • 1. 济南大学 资源与环境学院, 济南250022; 2. 山东正元建设工程有限责任公司, 济南250100;
     3. 山东省地矿工程勘察院, 济南250014
邢立亭,男,博士,教授、研究员.研究方向为地下水环境演化.E-mail:xlting596@163.com.

收稿日期: 2014-07-15

  网络出版日期: 2015-09-25

基金资助

国家自然科学基金(41172222,41472216)

Experimental study on hydrogeochemistry action in the process of freshwater displacing saltwater

  • XING Li-Ting ,
  • WANG Li-Yan ,
  • LI Chang-Suo ,
  • XU Min-Tian
Expand

Received date: 2014-07-15

  Online published: 2015-09-25

摘要

选取鲁北地区浅层粉土、浅层地下咸水及大气降水为供试材料,进行室内淡水驱替咸水试验,分析地下淡水驱替咸水过程中水化学成分形成、演化过程,探讨内陆浅层咸水区地下淡水驱替咸水过程中发生的水文地球化学过程.试验结果表明:① 驱替过程中,含水介质粘土矿物含量高,电导率≤0.83 ms/cm,粘土矿物“膜效应”使离子组分发生浓缩现象.② 驱替过程中,白云石处于沉淀状态,岩盐处于溶解状态;电导率>1.00 ms/cm,方解石处于沉淀状态;电导率≥6.22 ms/cm,石膏处于平衡状态.临界离子强度为0.20~0.25 mol/L,Mg/CaNa阳离子交换作用显著.电导率>12.00 ms/cm,离子交换吸附作用显著.研究表明,内陆浅层咸水区淡水驱替咸水过程中发生复杂的水化学作用,主要包括吸附作用、离子交换作用、溶滤作用、脱白云岩化作用及混合作用.

本文引用格式

邢立亭 , 王立艳 , 李常锁 , 徐旻天 . 地下淡水驱替咸水过程中水文地球化学作用的试验研究[J]. 华东师范大学学报(自然科学版), 2015 , 2015(4) : 132 -143 . DOI: 10.3969/j.issn.1000-5641.2015.04.014

Abstract

Based on test materials, including of silt, shallow salt groundwater and atmospheric precipitation which were got in northwestern Shandong geochemistry action in the process of freshwater displacing saltwater were studied. The results indicated that (1) When content of clay was high in aquifer medium, and specific conductivity of exudate was less than or equal to 0.83 ms/cm in the process of freshwater displacing saltwater, clay played a role of film effect in concentrating ion components. (2) Dolomite still kept precipitation with water, and halite still kept dissolution in the process of freshwater displacing saltwater. Calite precipitated when specific conductivity of exudate was more than 1.00 ms/cm; Gypsum balanced with water when specific conductivity of exudate was more than or equal to 6.22 ms/cm. Mg/CaNa exchange interaction was remarkable with critical ion strength being in 0.20~0.25 mol/L. Adsorption was remarkable while specific conductivity of exudate was more then 12.00 ms/cm. Displacement experiment showed that hydrogeochemistry actions were happened in the process of freshwater displacing saltwater with adsorption, exchange interaction, lixiviation, dolomitization and mixing action.

参考文献

[1]李小峰, 张良月. 天津市浅层地下咸水资源利用及其环境影响评价[J]. 地下水, 2001, 23(1): 1215. 

[2]刘友兆, 付光辉. 中国微咸水资源化若干问题研究[J]. 地理与地理信息科学, 2004, 20(2): 5760. 

[3]张清寰, 张彧瑞, 赵艳萍, 等. 金塔盆地地下水演化及地球化学模拟[J]. 干旱区地理, 2011, 9(5): 772776. 

[4]MEHTA S, FRYAR A E, BRADY R M, et al. Modeling regional salinization of the Ogallala aquifer, Southern High Plains, TX, USA[J]. Journal of Hydrology, 2000, 238: 4464.

[5]徐彦泽, 田小伟, 郑跃军, 等. 沧州市浅层地下水的咸化和淡化[J]. 水文地质工程地质, 2009(2): 112116. 

[6]张宗祜, 施德鸿, 沈照理, 等. 人类活动影响下华北平原地下水环境的演化与发展[J]. 地球学报, 1997, 11(4): 337344. 

[7]李向全, 余秋生, 侯新伟, 等. 宁南清水河盆地地下水循环特征与苦咸水成因[J]. 水文地质工程地质, 2006(1): 4651.

[8]赵全升, 冯娟, 安乐生. 德州市深层地下水水质演化研究[J]. 地理科学, 2009, 29(5): 766771. 

[9]〖JP2〗李向全, 侯新伟, 周志超, 等. 太原盆地地下水系统水化学特征及形成演化机制[J]. 现代地质, 2009, 2(1): 18.

[10]WEISBROD N, DRAGILA M I. Potential impact of convective fracture venting on saltcrust build up and groundwater salinization in arid environments[J]. Journal of Arid Environments, 2006, 65: 386399.

[11]李彬, 王志春, 梁正伟, 等. 吉林省西部苏打碱化土壤区地下水电导率分析与水质评价[J]. 农业环境科学学报, 2007, 26(3): 939944. 

[12]周承刚, 白喜庆. 宁夏南部地区苦咸水化地下水的成因[J]. 煤田地质与勘探, 1999(4): 3638. 

[13]CRESCIMANNO G, DE SANTIS A. Bypass flow, salinization and sodication in a cracking clay soil[J]. Geoderma, 2004,121(3): 307321.

[14]SHANYENGANA E S, SEELY M K, SANDERSON R D. Majorion chemistry and groundwater salinization in ephemeral flood plains in some arid regions of Namibia[J]. Journal of Arid Environments, 2004, 57: 7183.

[15]FIDELIBUS M D. Environmental tracing in coastal aquifer: old problems and solutions[J]. Coastal Aquifer Intrusion Technology: Mediterranean Countrise, 2003(2): 7981.

[16]WU J C, BILL X. Threedimensional numerical method of moments for linear equilibriumadsorbing solute transport in physically and chemically nonstationary formations[J]. Mathematical Geology, 2004, 36(2): 261288.

[17]安永会, 张福存, 姚秀菊. 黄河三角洲水土盐形成演化与分布特征[J]. 地球与环境, 2006, 34 (3): 6570. 

[18]方生, 陈秀玲, BOERS T M. 华北平原东部水资源可持续利用[J]. 水利规划与设计, 2003(4): 2431. 

[19]周晓妮, 刘少玉, 王哲, 等. 华北平原典型区浅层地下水化学特征及可利用性分析—以衡水为例[J]. 水科学与工程技术, 2008(2): 5659. 

[20]王英. 咸水越流过程中盐分迁移特征的实验及模拟研究[D].河北唐山: 河北联合大学, 2013: 2023. 

[21]WARREN J. Dolomite: occurrence, evolution and economically important associations[J]. EarthSci Rev, 2000, 52: 181.

[22]ZHANG X C, NORTON L D. Effect of exchangeable Mg on saturated hydraulic condutivity, disggregationand clay dispersion of disturbed soils[J]. Journal of Hydrology, 2002, 260: 194205.

[23]任加国. 咸淡水过渡带水文地球化学作用研究[D].山东青岛:中国海洋大学, 2007: 8390. 

[24]刘茜. 咸淡水过渡带水岩相互作用研究[D].山东青岛: 中国海洋大学, 2007: 7173.

[25]沈照理, 朱宛华, 钟左燊. 水文地球化学基础[M]. 北京:地质出版社, 1993. 

[26]宁劲松, 于志刚, 江雪艳. 莱州湾沿岸地下卤水的化学组成[J]. 海洋科学, 2005, 29(11): 1317.

[27]苏乔. 莱州湾南岸地下卤水水化学特征及成因探讨[D].山东青岛: 中国海洋局第一海洋研究所, 2009: 2425. 

[28]于天仁, 王振权. 土壤分析化学[M]. 北京:科学出版社, 1988: 156296. 

[29]FRENKEL H, GOERTZEN J, ROADES J D. Effects of soil type and content, exchangeable sodium percentage and electrolyte concentration on clay dispersion and soil hydraulic conductivity[J]. Soil Science Society of America Journal, 1978, 42: 3239.

[30]肖振华, 万洪富. 灌溉水质对土壤水力性质和物理性质的影响[J]. 土壤学报, 1998, 3(3): 359366.

[31]〖JP2〗李海明, 佟琪, 翟菁, 等. 不同钠吸附比含水介质渗透性损失的胶体效应[J]. 农业工程学报, 2011, 27(8): 9094.
文章导航

/