综述论文

LBS的隐私保护:模型与进展

  • 赵大鹏 ,
  • 梁磊 ,
  • 田秀霞 ,
  • 王晓玲
展开
  • 1. 华东师范大学 数据科学与工程研究院 上海市高可信计算重点实验室,上海200062;
    2.上海电力学院 计算机科学与技术学院,上海201300
赵大鹏,男,硕士研究生,研究方向为隐私保护.E-mail: 51141500066@ecnu.cn.

收稿日期: 2015-09-16

  网络出版日期: 2015-10-08

基金资助

国家自然科学基金(61170085,61472141);上海市重点学科建设项目(B412);上海市可信物联网软件协同创新中心(ZF1213)

Privacy protection in locationbased services: Model and development

  • ZHAO Da-Peng ,
  • LIANG Lei ,
  • TIAN Xiu-Xia ,
  • WANG Xiao-Ling
Expand

Received date: 2015-09-16

  Online published: 2015-10-08

摘要

近些年来,随着配备定位功能的移动终端数量迅速增加,基于位置服务(LBS)的应用呈现爆炸式的增长,例如查找最邻近的加油站、一公里范围内的所有餐厅等.在用户享受着这些LBS服务为工作、生活带来方便的同时,许多隐私安全问题也逐渐引起了人们的关注.全面了解基于位置服务中现有的隐私保护工作,有利于研究者把握该领域的研究现状、未来发展方向以及存在的挑战.本文对LBS 隐私保护领域中近些年的发展进行了研究总结,重点介绍了LBS隐私保护领域现有的攻击模型、隐私保护模型、度量模型以及数据集,并对现有攻击模型与隐私保护模型进行分类总结,根据其特点进行对比分析,最后探讨了LBS隐私保护目前存在的问题以及未来的发展方向.

本文引用格式

赵大鹏 , 梁磊 , 田秀霞 , 王晓玲 . LBS的隐私保护:模型与进展[J]. 华东师范大学学报(自然科学版), 2015 , 2015(5) : 28 -45 . DOI: 10.3969/j.issn.1000-5641.2015.05.003

Abstract

In recent years, with the rapid increase in the number of GPSenabled mobile devices, locationbased services (LBS) applications grow explosively, such as finding the nearest gas station or restaurants within one kilometer and so on. Users benefit from convenience of LBS. However, many privacy issues draw people's attention gradually. Acomprehensive understanding of existing privacy protection work in the locationbased services is important for researchers to grasp the present research status, the future development directionsand the challenges.We give a deep survey of the recent improvement in LBS,which mainly focus on existing attacking models,privacy protection model, measure model and datasets.What′s more, we classifies the existing attacking model and privacy protection model and made comparisons based on different features. Finally unsolved problems and future development are also discussed. 

参考文献

[1]JUNGLAS I A, WATSON R T. Locationbased services[J]. Communications of the ACM, 2008, 51(3): 6569.

[2]ZICKUHR K. Locationbased services[J]. Pew Research, 2013:125.

[3]BARKHUUS L, DEY A K. Locationbased services for mobile telephony: A study of users' privacy concerns[C]IFIP TC13 International Conference on HumanComputer Interaction. Zurich, Switzerland: DBLP, 2003: 709712.

[4]鲁中网鲁中晨报.iphone苹果手机定位服务涉嫌泄露用户隐私[EB/OL].[20150530].http://news.lznews.cn/2014/0712/740174.html.

[5]cnBeta.cm.McAfee称谷歌获取用户隐私给社会带来毁灭性影响[EB/OL].[20150530].http://www.cnbeta.com/articles/317799.htm.

[6]Marist Poll. Half of Social Networkers Online Concerned about Privacy[EB/OL].[20150530]http://maristpoll.marist.edu/714halfofsocialnetworkersonlineconcernedaboutprivacy/.

[7]王璐, 孟小峰. 位置大数据隐私保护研究综述[J]. 软件学报, 2014, 25(4):693712.

[8]PINGLEY A, ZHANG N, FU X, et al. Protection of query privacy for continuous location based services[C]INFOCOM, 2011 Proceedings IEEE.\[s.l.\]:IEEE, 2011: 17101718.

[9]GEDIK B, LIU L. Protecting location privacy with personalized kanonymity: Architecture and algorithms[J]. Mobile Computing, IEEE Transactions on, 2008, 7(1): 118.

[10]ZHANG C Y, HUANG Y. Cloaking locations for anonymous location based services: A hybrid approach[J]. Geoinformatica,2009,13(2):159182.

[11]CHOW C Y, MOKBEL M F, AREDF W G. Casper*: Query processing for location services without compromising privacy[J]. ACM Transactions on Database Systems (TODS), 2009, 34(4): 24.

[12]REBOLLOMONEDERO D, PARRAAMAU J, DIAZ C, et al. On the measurement of privacy as an attacker’s estimation error[J]. International Journal of Information Security, 2013, 12(2): 129149.

[13]GHINITA G, KALNIS P, KHOSHGOZARAN A, et al. Private queries in location based services: anonymizers are not necessary[C]Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2008: 121132.

[14]PALANISAMY B, LIU L. Attackresilient mixzones over road networks: architecture and algorithms[J]. Mobile Computing IEEE Translations on, 2015,14(3):495508.

[15]CHOW C Y, MOKBEL M F. Enabling private continuous queries for revealed user locations[M]Advances in Spatial and Temporal Databases. Berlin: Springer, 2007: 258275.

[16]XIAO P, ZHEN X. Survey of location privacypreserving[J]. Journal of Frontiers of Computer Science and Technology, 2007, 1(3): 268281.

[17]LIU F Y, HUA K A, CAI Y. Query ldiversity in locationbased services[C]Mobile Data Management: Systems, Services and Middleware. Tenth International Conference on IEEE.[s.l.]: IEEE Xplore, 2009: 436442.

[18]吴雷, 潘晓, 朴春慧, 等. 基于位置服务中防止敏感同质性攻击的个性化隐私保护[J]. 计算机应用, 2014, 34(8): 23562360.

[19]DING Y, PEDDINTI S T, ROSS K W. Stalking Beijing from Timbuktu: A generic measurement approach for exploiting locationbased social discovery[C]Proceedings of the 4th ACM Workshop on Security and Privacy in Smartphones and Mobile Devices. New York: ACM, 2014: 7580.

[20]BERESFORD A R, STAJANO F. Location privacy in pervasive computing[J]. IEEE Pervasive computing, 2003, 2(1): 4655.

[21]PAN X, MENG X, XU J. Distortionbased anonymity for continuous queries in locationbased mobile services[C]Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York: ACM, 2009: 256265.

[22]SHOKRI R, THEODORAKOPOULOS G, LE BOUDEC J Y, et al. Quantifying location privacy[C]Security and Privacy (SP), IEEE Symposium on.[s.l.]:IEEE, 2011: 247262.

[23]MACHANAVAJJHALA A, KIFER D, GEHRKE J, et al. lDiversity: Privacy beyond kanonymity[J]. ACM Transactions on Knowledge Discovery from Data (TKDD), 2007, 1(1): 3.

[24]PAN X, XU J, MENG X. Protecting location privacy against locationdependent attacks in mobile services[J]. Knowledge and Data Engineering, IEEE Transactions on, 2012, 24(8): 15061519.

[25]XUE A Y, ZHANG R, ZHENG Y, et al. Destination prediction by subtrajectory synthesis and privacy protection against such prediction[C]Data Engineering (ICDE), 2013 IEEE 29th International Conference on.[s.l.]:IEEE, 2013: 254265.

[26]GRUTESER M, GRUNWALD D. Anonymous usage of locationbased services through spatial and temporal cloaking[C]Proceedings of the 1st Iinternational Conference on Mobile Systems, Applications and Services. New York: ACM, 2003: 3142.

[27]MOKBEL M F, CHOW C Y, AREF W G. The new Casper: Query processing for location services without compromising privacy[C]Proc. of the 32nd Int’l Conf. on Very Large Data Bases. Seoul: VLDB Endowment, 2006:763774.

[28]田秀霞, 王晓玲, 高明, 等. 数据库服务——安全与隐私保护[J]. 软件学报, 2010, 21(5): 9911006.

[29]XU T, CAI Y. Exploring historical location data for anonymity preservation in locationbased services[C]INFOCOM 2008. The 27th Conference on Computer Communications. IEEE.[s.l.]:IEEE, 2008.

[30]XU T, CAI Y. Location anonymity in continuous locationbased services[C]Proceedings of the 15th annual ACM international symposium on Advances in geographic information systems. New York: ACM, 2007: 39.

[31]GHINITA G, KALNIS P, SKIADOPOULOS S. PRIVE: anonymous locationbased queries in distributed mobile systems[C]Proceedings of the 16th international conference on World Wide Web. New York: ACM, 2007: 371380.

[32]CHE Y, CHIEW K, HONG X, et al. SALS: semanticsaware location sharing based on cloaking zone in mobile social networks[C]Proceedings of the First ACM SIGSPATIAL International Workshop on Mobile Geographic Information Systems. New York: ACM, 2012: 4956.

[33]BUTTYAN L, HOLCZER T, VAJDA I. On the effectiveness of changing pseudonyms to provide location privacy in VANETs[M]Security and Privacy in Adhoc and Sensor Networks. Berlin: Springer, 2007: 129141.

[34]PALANISAMY B, LIU L. Mobimix: Protecting location privacy with mixzones over road networks[C]Proceedings of the 27th International Conference on Data Engineering. Hannover,Germany: IEEE, 2011: 494505.

[35]PALANISAMY B, LIU L. Effective mixzone anonymization techniques for mobile travelers[J]. GeoInformatica, 2014, 18(1): 135164.

[36]NIU B, LI Q, ZHU X, et al. Achieving kanonymity in privacyaware locationbased services[C]IEEE INFOCOM 2014IEEE Conference on Computer Communications. [s.l.]: IEEE, 2014: 754762.

[37]LU H, JENSEN C S, YIU M L. Pad: Privacyarea aware, dummybased location privacy in mobile services[C]Proceedings of the Seventh ACM International Workshop on Data Engineering for Wireless and Mobile Access.New York: ACM, 2008: 1623.

[38]YIU M L, JENSEN C S, MOLLER J, et al. Design and analysis of a ranking approach to private locationbased services[J]. ACM Transactions on Database Systems (TODS), 2011, 36(2): 10.

[39]ZHOU C, MA C, YANG S, et al. A Location Privacy Preserving Method Based on Sensitive Diversity for LBS[M]Network and Parallel Computing. Berlin: Springer, 2014: 409422.

[40]CICEK A E, NERGIZ M E, SAYGIN Y. Ensuring location diversity in privacypreserving spatiotemporal data publishing[J]. The VLDB Journal, 2014, 23(4): 609625.

[41]ASSAM R, HASSANI M, SEIDL T. Differential private trajectory protection of moving objects[C]Proceedings of the Third ACM SIGSPATIAL International Workshop on GeoStreaming. New York: ACM, 2012: 6877.

[42]CHEN R, FUNG B, DESAI B C, et al. Differentially private transit data publication: a case study on the montreal transportation system[C]Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining. New York: ACM, 2012: 213221.

[43]PAPADOPOULOS S, BAKIRAS S, PAPADIAS D. pCloud: A Distributed System for Practical PIR[J]. IEEE Trans Dependable Sec Comput, 2012, 9(1): 115127.

[44]SCHLEGEL R, CHOW C Y, HUANG Q, et al. UserDefined Privacy Grid System for Continuous LocationBased Services[J]. Mobile Computing, IEEE Transactions on, 2015, 14(10): 21582172.

[45]LU R, LIN X, SHI Z, et al. PLAM: A privacypreserving framework for localarea mobile social networks[C]IEEE INFOCOM 2014IEEE Conference on Computer Communications.[s.l.]:IEEE, 2014: 763771.

[46]KHOSHGOZARAN A, SHIRANIMEHR H, SHAHABI C. Blind evaluation of location based queries using space transformation to preserve location privacy[J]. GeoInformatica, 2013, 17(4): 599634.

[47]VICENTE C R, KIRKPATRICK M, GHINITA G, et al. Towards locationbased access control in healthcare emergency response[C]Proceedings of the 2nd SIGSPATIAL ACM GIS 2009 International Workshop on Security and Privacy in GIS and LBS. New York:ACM, 2009: 2226.

[48]ZHANG Y, CHEN K, LIAN Y. A pathbased access control method for location obfuscation in mobile environment[C]Electrical and Electronics Engineering (EEESYM), IEEE Symposium on.[s.l.]:IEEE, 2012: 570573.

[49]SERJANTOV A, DANEZIS G. Towards an information theoretic metric for anonymity[C]Proceedings of the Workshop on Privacy Enhancing Technologies. Berlin: Springer, 2003: 4153.

[50]XU J, TANG X, HU H, et al. Privacyconscious locationbased queries in mobile environments[J]. Parallel and Distributed Systems, IEEE Transactions on, 2010, 21(3): 313326.

[51]SWEENEY L. kanonymity: A model for protecting privacy[J]. International Journal of Uncertainty, Fuzziness and KnowledgeBased Systems, 2002, 10(05): 557570.

[52]XIAO Z, XU J, MENG X. pSensitivity: A semantic privacyprotection model for locationbased services[C]Mobile Data Management Workshops, 2008. MDMW 2008. Ninth International Conference on IEEE. [s.l.]: IEEE, 2008: 4754.

[53]YANG N, CAO Y, LIU Q, et al. A novel personalized TTPfree location privacy preserving method[J]. International Journal of Security and Its Applications, 2014, 8(2): 387398.

[54]ZHANG X, XIA Y, BAE H Y, et al. A novel location privacy preservation method for moving object[J]. International Journal of Security and Its Applications, 2015, 9(2): 112.

[55]SHOKRI R, THEODORAKOPOULOS G, DANEZIS G, et al. Quantifying location privacy: The case of sporadic location exposure[C]Privacy Enhancing Technologies. Berlin: Springer, 2011: 5776.

[56]BRINKHOFF T. A framework for generating networkbased moving objects[J]. Geoinformatica, 2002, 6(2): 153180.

[57]YAO L, LIN C, LIU G, et al. Location anonymity based on fake queries in continuous locationbased services[C]Availability, Reliability and Security (ARES), 2012 Seventh International Conference on IEEE.[s.l.]:IEEE, 2012: 375382.
文章导航

/