提出了一种高效的保护隐私的轨迹相似度计算框架. 基于安全的同态加密系统和Yao协议,该框架能够确保持有轨迹的两方不能得到除了轨迹相似度以外的其他任何信息,从而同时保护了两方的轨迹数据隐私. 该框架针对轨迹相似度计算过程中的不同步骤具有不同的计算特点,交替使用同态加密系统和Yao协议,从而有效地提高了性能. 实验结果表明本框架与已有的方法相比显著减少了计算开销.
[1]霍峥, 孟小峰. 轨迹隐私保护技术研究[J]. 计算机学报, 2011, 34(10): 18201830.
[2]霍峥, 孟小峰, 黄毅. PrivateCheckIn: 一种移动社交网络中的轨迹隐私保护方法[J]. 计算机学报, 2013, 36(4): 716726.
[3]CHEN L, ZSU M T, ORIA V. Robust and fast similarity search for moving object trajectories[C]Proceedings of the 2005 ACM SIGMOD international conference on Management of data. ACM, 2005: 491502.
[4]ABUL O, BONCHI F, NANNI M. Never walk alone: Uncertainty for anonymity in moving objects databases[C]Data Engineering, 2008. ICDE 2008. IEEE 24th International Conference on. Ieee, 2008: 376385.
[5]GRUTESER M, GRUNWALD D. Anonymous usage of locationbased services through spatial and temporal cloaking[C]Proceedings of the 1st international conference on Mobile systems, applications and services. ACM, 2003: 3142.
[6]LI N, LI T, VENKATASUBRAMANIAN S. tcloseness: Privacy beyond kanonymity and ldiversity[C]Data Engineering, 2007. ICDE 2007. IEEE 23rd International Conference on. IEEE, 2007: 106115.
[7]DWORK C. Differential privacy[M]Encyclopedia of Cryptography and Security. US: Springer, 2011: 338340.
[8]DWORK C. Differential privacy: A survey of results[M]Theory and Applications of Models of Computation. Berlin Heidelberg: Springer, 2008: 119.
[9]DWORK C, LEI J. Differential privacy and robust statistics[C]Proceedings of the fortyfirst annual ACM symposium on Theory of computing. ACM, 2009: 371380.
[10]张啸剑, 孟小峰. 面向数据发布和分析的差分隐私保护[J]. 计算机学报, 2014(4): 018.
[11]DENG K, XIE K, ZHENG K, et al. Trajectory indexing and retrieval[M]Computing with spatial trajectories. New York: Springer, 2011: 3560.