生命科学

姜黄素对老年鼠脑内氧化性平衡和星形胶质细胞的影响

  • 张盼 ,
  • 俞彬 ,
  • 刘莎 ,
  • 段雅乐 ,
  • 赵政
展开
  • 华东师范大学 脑功能基因组学教育部重点实验室,上海市脑功能基因组学重点实验室,神经药理研究室,上海200062
张盼,女,博士研究生,研究方向为药理学.Email: 478664205@qq.com.

收稿日期: 2014-09-12

  网络出版日期: 2015-12-23

基金资助

国家自然科学基金(31171019,31200820);脑功能基因组学教育部重点实验室,上海市脑功能基因组学重点实验室(华东师范大学)开放项目基金

Effects of curcumin on oxidative stress status and thefunctions of astrocytes in the brain of aged rats

  • ZHANG Pan ,
  • YU Bin ,
  • LIU Sha ,
  • DUAN Ya-Le ,
  • ZHAO Zheng
Expand

Received date: 2014-09-12

  Online published: 2015-12-23

摘要

以SD大鼠为动物模型,采用Western blotting、酶活性测定、免疫荧光和高效液相色谱质谱(LCMS)方法考察姜黄素处理12周后正常衰老大鼠皮层和海马的氧化性平衡和星形胶质细胞形态功能的变化.结果显示,姜黄素降低了老年鼠脑内氧化产物MDA和8OHdG的含量,提升了γ谷氨酰胺半胱氨酸合成酶(GCS)的活性并且促进GSH的产生,提示姜黄素可显著改善伴随正常衰老过程的脑内氧化性平衡;同时姜黄素可以抑制胶质纤维酸性蛋白(GFAP)的过度表达,提升GS活性,增加GDNF水平和D丝氨酸含量,表明其抑制星形胶质细胞过度活化的同时也改善了星形胶质细胞的功能.

本文引用格式

张盼 , 俞彬 , 刘莎 , 段雅乐 , 赵政 . 姜黄素对老年鼠脑内氧化性平衡和星形胶质细胞的影响[J]. 华东师范大学学报(自然科学版), 2015 , 2015(6) : 108 -116 . DOI: 10.3969/j.issn.1000-5641.2015.06.014

Abstract

The change of oxidative balance and astrocyte in the cortex and hippocampus of aged SD rats were investigated by Western blotting, enzyme assay, immunofluorescence and HPLCMS. The data showed that curcumin reduced the level of MDA and 8OHdG and enhanced the level of GSH and GCS activity, which indicated that curcumin inhibited the oxidative damage in the brian; the detection of the level of glial fibrillary acidic protein (GFAP) indicated curcumin inhibited the excessive activation of astrocytes and also the results of the activity of GS, the level of GDNF and Dserine showed that curcumin improved the function of astrocytes.

参考文献

[1]MAUGERI D, SANTANGELO A, BONANNO M R, et al. Oxidative stress and aging: Studies on an EastSicilian, ultraoctagenarian population living in institutes or at home[J]. Arch Gerontol Geriatr Suppl, 2004(9):271277.

[2]FUKUI K, OMOI N O, HAYASAKA T, et al. Cognitive impairment of rats caused by oxidative stress and aging, and its prevention by vitamin E[J]. Ann N Y AcadSci, 2002, 959:275284.

[3]ASCHNER M. Neuronastrocyte interactions: Implications for cellular energetics and antioxidant levels[J]. Neurotoxicology, 2000, 21(6):11011107.

[4]FEMANDEZFEMANDEZ S,ALMEIDA A,BOLANOS J P.Antioxidant and bioenergetic coupling between neurons and astrocytes[J]. Biochem J, 2012, 443(1): 311.

[5]GORDON T. The physiology of neural injury and regeneration: The role of neurotrophicfactors[J]. J Commun Disord, 2010, 43(4):265273.

[6]YANG Y, GE W, CHEN Y, et al. Contribution of astrocytes to hippocampal longterm potentiation through release of Dserine[J].Proc Natl Acad Sci USA, 2003, 100(25):1519415199.

[7]CHHUNCHHA B, FATMA N, KUBO E, et al.Curcumin abates hypoxiainduced oxidative stress basedER stressmediated cell death in mouse hippocampal cells (HT22) by controlling Prdx6 and NFkappa Bregulation[J]. Am J Physiol Cell Physiol, 2013, 304(7): C636C655.

[8]〖JP2〗SOETIKNO V, SARI F R, LAKSHMANANAK A P, et al.Curcumin alleviates oxidative stress, inflammation, and renal fibrosis in remnant kidney through the Nrf2keap1 pathway[J]. Mol Nutr Food Res, 2013, 57(9):16491659.〖JP〗

[9]WANG Y, YIN H, WANG L, et al.Curcumin as a potential treatment for Alzheimer’s disease: A study of the effects of curcumin on hippocampal expression of glial fibrillary acidic protein[J]. Am J Chin Med, 2013, 41(1):5970.

[10]DONG S, ZENG Q, MITCHELL E S, et al.Curcumin enhances neurogenesis and cognition in aged rats: Implications for transcriptional interactions related to growth and synaptic plasticity[J]. Plos One, 2012, 7(2):e31211.

[11]王伟莉.HPLCESIMS法测定大鼠脑组织中神经递质L/D丝氨酸的含量[J].华东师范大学学报:自然科学版,2013(6):165170.

[12]AOYAMA K, WATABE M,NAKAKI T. Regulation of neuronal glutathione synthesis[J]. J Pharmacol Sci, 2008, 108(3):227238.

[13]DRINGEN R, HIRRLINGER J. Glutathione pathways in the brain[J]. Biol Chem, 2003, 384(4): 505516.

[14]CURRAIS A, MAHER P. Functional consequences of agedependent changes in glutathione status in the brain[J]. Antioxid Redox Signal, 2013, 19(8): 813822.

[15]CERBAI F, LANA D, NOSI D, et al. The neuronastrocytemicroglia triad in normal brain ageing and in a model of neuroinflammation in the rat hippocampus[J]. Plos One, 2012, 7(9):e45250.

[16]BERCIANO M T, ANDRES M A, CALLE E, et al. Ageinduced hypertrophy of astrocytes in rat supraoptic nucleus: A cytological, morphometric, and immunocytochemicalstudy[J]. Anat Rec, 1995, 243(1):129144.

[17]ITOH Y, YAMADA M, SUEMATSU N, et al. An immunohistochemical study of centenarian brains: Acomparison[J]. J Neurol Sci, 1998, 157(1):7381.

[18]ZHANG R, KADAR T, SIRIMANNE E, et al. Agerelated memory decline is associated with vascular and microglial degeneration in aged rats[J]. Behav Brain Res, 2012, 235(2):210217.

[19]LIVELY S, SCHLICHTER L C. Agerelated comparisons of evolution of the inflammatory response after intracerebral hemorrhage in rats[J]. Transl Stroke Res, 2012, 3(Suppl 1):132146.

[20]〖JP2〗ENONGENE E N, SUN P N, MEHTA C S. Sodium thiosulfate protects against acrylonitrileinduced elevation of glial fibrillary acidic protein levels by replenishing glutathione[J]. Environ Toxicol Pharmacol, 2000, 8(2):153161.〖JP〗

[21]JAVED H, KHAN M M, AHMAD A, et al. Rutin prevents cognitive impairments by ameliorating oxidative stress and neuroinflammation in rat model of sporadic dementia of Alzheimer type[J]. Neuroscience, 2012,210:340352.

[22]〖JP2〗GHODDOUSSI F, GALLOWAY M P, JAMBEKAR A, et al. Methionine sulfoximine, an inhibitor of glutamine synthetase, lowers brain glutamine and glutamate in a mouse model of ALS[J]. J Neurol Sci, 2010, 290(12):4147.〖JP〗

[23]HEAD E, LIU J, HAGEN T M, et al. Oxidative damage increases with age in a canine model of human brain aging[J]. J Neurochem, 2002, 82(2):375381.

[24]WU Y, ZHANG A Q, YEW D T. Age related changes of various markers of astrocytes in senescenceaccelerated mice hippocampus[J]. Neurochem Int, 2005, 46(7):565574.

[25]ISLAM O, LOO T X, HEESE K. Brainderived neurotrophic factor (BDNF) has proliferative effects on neural stem cells through the truncated TRKB receptor, MAP kinase, AKT, and STAT3 signaling pathways[J]. Curr Neurovasc Res, 2009, 6(1):4253.

[26]CHEN Y, AI Y, SLEVIN J R, et al. Progenitor proliferation in the adult hippocampus and substantianigra induced by glial cell linederived neurotrophic factor[J]. Exp Neurol, 2005, 196(1):8795.

[27]SCHELL M J. The Nmethyl Daspartate receptor glycine site and Dserine metabolism: An evolutionary perspective[J].Philos Trans R Soc Lond B Biol Sci, 2004, 359(1446):943964.

[28]BILLARD J M. Dserine signalling as a prominent determinant of neuronalglial dialogue in the healthy and diseased brain[J]. J Cell Mol Med, 2008, 12(5B):18721884.

[29]NAGAI T, YU J, KITAHARA, et al. Dserine ameliorates neonatal PolyI:C treatmentinduced emotional and cognitive impairments in adult mice[J]. J Pharmacol Sci, 2012, 120(3):213227.

[30]FOSSAT P, TURPIN F R, SACCHU S, et al. Glial Dserine gates NMDA receptors at excitatory synapses in prefrontal cortex[J]. Cereb Cortex, 2012, 22(3):595606.

[31]TURPIN F R, POTIER B, DULONG J R, et al. Reduced serine racemase expression contributes to agerelated deficits in hippocampal cognitive function[J]. Neurobiol Aging, 2011, 32(8):14951504.

[32]HAXAIRE C, TURPIN F R, POTIER B, et al. Reversal of agerelated oxidative stress prevents hippocampal synaptic plasticity deficits by protecting Dserinedependent NMDA receptor activation[J]. Aging Cell, 2012, 11(2):336344.
文章导航

/