特约综述

水生动物肠道微生物研究进展

  • 张美玲 ,
  • 杜震宇
展开
  • 华东师范大学 生命科学学院 水生动物营养与环境健康实验室,上海200241
张美玲,女,副教授,研究方向为肠道微生物与宿主营养代谢.

收稿日期: 2015-01-16

  网络出版日期: 2016-03-10

基金资助

国家“973”重点基础研究发展计划(2014CB138603); 国家自然科学基金(31272676/C190401)

Review and perspective: Function of intestinal microbiota in aquatic animals

  • ZHANG Mei-Ling ,
  • DU Zhen-Yu
Expand

Received date: 2015-01-16

  Online published: 2016-03-10

摘要

动物体消化道栖息着一个数量庞大、种类繁多的微生物群落,肠道微生物与宿主生理代谢的相互关系已成为国际生物学界研究的热点之一. 然而与高等动物相比,水生动物这方面的研究尚处于起步阶段. 本文从水生动物肠道共生微生物形成的影响因素、水生动物肠道微生物的组成特点、肠道微生物对宿主的影响以及肠道微生物生态学研究策略方面综述了近年来国内外研究取得的进展,阐述了消化道微生物分子生态学研究在水生动物营养代谢、免疫及发育调控中的意义和发展前景.

本文引用格式

张美玲 , 杜震宇 . 水生动物肠道微生物研究进展[J]. 华东师范大学学报(自然科学版), 2016 , 2016(1) : 1 -8 . DOI: 10.3969/j.issn.10005641.2016.01.001

Abstract

The digestive tracts of vertebrates harbors complex assemblages of bacterial community, which play important roles in nutrient absorption, immune regulation and epithelial development in the host. Although aquatic animals represent the biggest taxonomic and ecological diversity, our knowledge about their intestinal bacteria composition and function is limited. This paper summarizes the recent progress in the research of intestinal bacteria, including the factors influencing the intestinal microbiota assemble, features of the intestinal microbiota in aquaculture and the relationship between the host and the intestinal bacteria,and suggestes the significance and perspective of microbial ecology in aquaculture in future.

参考文献

[1]The Human Microbiome Project, Consortium. Structure, function and diversity of the healthy human microbiome [J]. Nature, 2012, 486(7402): 207214.

[2]ECKBURG P B, BIK E M, BERNSTEIN C N, et al. Diversity of the human intestinal microbial flora [J]. Science, 2005, 308(5728): 16351638.

[3]FLINT H J, SCOTT K P, LOUIS P, et al. The role of the gut microbiota in nutrition and health [J]. Nature Reviews Gastroenterology & Hepatology, 2012, 9(10): 577589.

[4]ZHANG M L, CHEKAN J R, DODD D, et al. Xylan utilization in human gut commensal bacteria is orchestrated by unique modular organization of polysaccharidedegrading enzymes [J]. Proceeding of the National Academy of Sciences of the United States of America, 2014, 111(35): 37083717.

[5]SOKOL H, PIGNEUR B, WATTERLOT L, et al. Faecalibacterium prausnitzii is an antiinflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients [J]. Proceeding of the National Academy of Sciences of the United States of America, 2008, 105(43): 1673116736.

[6]WONG S,RAWLS J F, Intestinal microbiota composition in fishes is influenced by host ecology and environment [J]. Molecular Ecology, 2012, 21(13): 31003102.

[7]ROESELERS G, MITTGE E K, STEPHENS W Z, et al. Evidence for a core gut microbiota in the zebrafish [J]. ISME J, 2011, 5(10): 15951608.

[8]LI X, YU Y, FENG W, et al. Host species as a strong determinant of the intestinal microbiota of fishlarvae [J]. J Microbiol, 2012, 50(1): 2937.

[9]张涵,周涛,王岩.综合养殖池塘中三角帆蚌和鱼类肠道细菌的组成 [J]. 水生生物学报, 2013,37(5):824835.

[10]ZHANG M L, SUN Y H, CHEN K, et al. Characteriaztion of the intestinal microbiota in Pacific white shrimp, Litopenaeus vannamei, fed diets with different lipid sources [J]. Aquaculture, 2014, 434: 449455.

[11]RINGO E, SPERSTAD S, KRAUGERUD O F, et al. Use of 16S rRNA gene sequencing analysis to characterize culturable intestinal bacteria in Atlantic salmon (Salmo salar) fed diets with cellulose or nonstarch polysaccharides from soy [J]. Aquaculture Research, 2008, 39(10): 10871100.

[12]RUNGRASSAMEE W, KLANCHUI A, MIBUNKAEW S, et al. Characterization of intestinal bacteria in wild and domesticated adult black tiger shrimp (Penaeus monodon) [J]. PLoS One, 2014, 9(3): e91853.

[13]WONG S, WALDROP T, SUMMERFELT S, et al. Aquacultured rainbow trout (Oncorhynchus mykiss) possess a large core intestinal microbiota that is resistant to variation in diet and rearing density [J]. Applied and Environmental Microbiology, 2013, 79(16): 49744984.

[14]SULLAM K E, ESSINGER S D, LOZUPONE C A, et al. Environmental and ecological factors that shape the gut bacterial communities of fish: a metaanalysis [J]. Molecular Ecology, 2012, 21(13): 33633378.

[15]李星浩,严庆云,胡红娟,等.异育银鲫消化道微生物群落对恢复投喂的响应 [J]. 水生生物学报, 2014, 38(5): 854859.

[16]邢孟欣,李贵阳,候战辉,等.不同大菱鲆(Scophthalmus maximus)个体肠道菌群结构差异研究 [J]. 现代生物医学进展, 2014, 4(20): 38013805.

[17]王纯, 倪加加, 颜庆云, 等. 草鱼与团头鲂肠道菌群结构比较分析 [J]. 水生生物学报, 2014, 38(5): 868875.

[18]祭仲石,管卫兵,苏孙国,等.鲢、鳙肠道微生物的研究 [J]. 大连海洋大学学报, 2014, 29(1): 2226.

[19]王春忠,林国荣, 严涛,等.长毛对虾海水养殖环境以及虾肠道微生物群落结构研究 [J]. 水产学报, 2014, 38(5): 706712.

[20]KOSTIC A D, HOWITT M R,GARRETT W S. Exploring hostmicrobiota interactions in animal models and humans [J]. Genes & Development, 2013, 27(7): 701718.

[21]PHAM L N, KANTHER M, SEMOVA I, et al. Methods for generating and colonizing gnotobiotic zebrafish [J]. Nature Protocols, 2008, 3(12): 18621875.

[22]FLINT H J, SCOTT K P, DUNCAN S H, et al. Microbial degradation of complex carbohydrates in the gut [J]. Gut Microbes, 2012, 3(4): 289306.

[23]BACKHED F, MANCHESTER J K, SEMENKOVICH C F, et al. Mechanisms underlying the resistance to dietinduced obesity in germfree mice [J]. Proceeding of the National Academy of Sciences of the United States of America, 2007, 104(3): 979984.

[24]SEMOVA I, CARTEN J D, STOMBAUGH J, et al. Microbiota regulate intestinal absorption and metabolism of fatty acids in the zebrafish [J]. Cell Host & Microbe, 2012, 12(3): 277288.

[25]RAWLS J F, SAMUEL B S, GORDON J I. Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota [J]. Proceeding of the National Academy of Sciences of the United States of America, 2004, 101(13): 4596601.

[26]ASAKURA T, SAKATA K, YOSHIDA S, et al. Noninvasive analysis of metabolic changes following nutrient input into diverse fish species, as investigated by metabolic and microbial profiling approaches [J]. Peer J, 2014(2): 550.

[27]BATES J M, MITTGE E, KUHLMAN J, et al. Distinct signals from the microbiota promote different aspects of zebrafish gut differentiation [J]. Developmental Biology, 2006, 297(2): 374386.

[28]BATES J M, AKERLUND J, MITTGE E, et al. Intestinal alkaline phosphatase detoxifies lipopolysaccharide and prevents inflammation in zebrafish in response to the gut microbiota [J]. Cell Host & Microbe, 2007, 2(6): 371382.

[29]CHEESMAN S E, NEAL J T, MITTGE E, et al. Epithelial cell proliferation in the developing zebrafish intestine is regulated by the Wnt pathway and microbial signaling via Myd88 [J]. Proceeding of the National Academy of Sciences of the United States of America, 2011, 108 (Suppl 1): 45704577. 

[30]LAM S H, CHUA H L, GONG Z, et al. Development and maturation of the immune system in zebrafish, Danio rerio: A gene expression profiling, in situ hybridization and immunological study [J]. Developmental and Comparative Immunology, 2004, 28(1): 928.

[31]LAZADO C C, CCIPANG C M, GALLAGE S, et al. Responses of Atlantic cod Gadus morhua head kidney leukocytes to phytase produced by gastrointestinalderived bacteria [J]. Fish Physiol & Biochem, 2010, 36(4): 883891.

[32]LAZADO C C, CAIPNG C M, GALLAGE S, et al. Expression profiles of genes associated with immune response and oxidative stress in Atlantic cod, Gadus morhua head kidney leukocytes modulated by live and heatinactivated intestinal bacteria [J]. Comp Biochem Physiol B Biochem Mol Biol, 2010, 155(3): 24955.

[33]LOKESH J, FERNANDES J M, KORSNES K, et al. Transcriptional regulation of cytokines in the intestine of Atlantic cod fed yeast derived mannan oligosaccharide or betaglucan and challenged with Vibrio anguillarum [J]. Fish Shellfish Immunol, 2012, 33(3): 626631.

[34]LIU C H, CHIU C H, WANG S, et al. Dietary administration of the probiotic, Bacillus subtilis E20, enhances the growth, innate immune responses, and disease resistance of the grouper, Epinephelus coioides [J]. Fish Shellfish Immunol, 2012, 33(4): 699706.

[35]QIN C, ZHANG Y, LIU W, et al. Effects of chitooligosaccharides supplementation on growth performance, intestinal cytokine expression, autochthonous gut bacteria and disease resistance in hybrid tilapia Oreochromis niloticus female symbol x Oreochromis aureus male symbol [J]. Fish Shellfish Immunol, 2014, 40(1): 267274.

[36]胡毅, 谭北平, 麦康森, 等. 饲料中益生菌对凡纳滨对虾生长、肠道菌群及部分免疫指标的影响 [J].中国水产科学, 2008, 15(2): 244251.

[37]张荣斌, 曹俊明,黄燕华, 等. 低聚木糖对奥尼罗非鱼肠道形态、菌群组成和抗嗜水气单胞菌感染的影响 [J].上海海洋大学学报, 2012, 21(2): 233240.

[38]RENDUELES O, FERRIRES L, FRTAUD M, et al. A new zebrafish model of orointestinal pathogen colonization reveals a key role for adhesion in protection by probiotic bacteria [J]. Plos Pathogens, 2012, 8(7): e1002815.

[39]GREEN T J, SMULLEN R, BARNES A C. Dietary soybean protein concentrateinduced intestinal disorder in marine farmed Atlantic salmon, Salmo salar is associated with alterations in gut microbiota [J]. Vet Microbiol, 2013,166(1): 286292.
文章导航

/