应用数学与基础数学

加权~Coxeter~群(C3,l6)的胞腔(英)

  • 岳明仕
展开
  • 临沂大学物流学院, 山东~~临沂  276000)
岳明仕, 男,讲师, 研究方向为~Heck~代数及表示理论.

收稿日期: 2014-12-08

  网络出版日期: 2016-03-10

基金资助

国家自然科学基金(11071073)

Cells of the weighted Coxeter group (C3,l6)

  • YUE Ming-Shi
Expand

Received date: 2014-12-08

  Online published: 2016-03-10

摘要

{取~\alpha 是仿射~Weyl群~(\widetilde{A}_{2n},\widetilde{S}) 上某个满足~\alpha(\widetilde{S})=\widetilde{S} 的群自同构.仿射~Weyl 群~(\widetilde{C}_n,S) 可以看做仿射~Weyl 群\ (\widetilde{A}_{2n},\widetilde{S}) 在其群自同构~\alpha 下的固定点集合. \widetilde{A}_{2n} 上的长度函数\ \widetilde{l}_{2n} 在~\widetilde{C}_n 上的限制可以看做widetilde{C}_n 上的某个权函数. 本文给出了加权的~Coxeter 群\(\widetilde{C}_3,\widetilde{l}_6) 中所有左胞腔以及双边胞腔的清晰刻画并且证明 (\widetilde{C}_3,\widetilde{l}_6) 中的每个左胞腔都是左连通的.

本文引用格式

岳明仕 . 加权~Coxeter~群(C3,l6)的胞腔(英)[J]. 华东师范大学学报(自然科学版), 2016 , 2016(1) : 27 -38 . DOI: 10.3969/j.issn.1000-5641.2016.01.004

Abstract

Let \alpha be a group automorphism of the affine Weyl group (\widetilde{A}_{2n},\widetilde{S}) with \alpha(\widetilde{S})=\widetilde{S}. Affine Weyl group(\widetilde{C}_n,S) can be seen as the fixed point set of the affine Weyl group (\widetilde{A}_{2n},\widetilde{S}) under its group automorphism \alpha. The restriction to \widetilde{C}_n of the length function \widetilde{l}_{2n} on \widetilde{A}_{2n} can be seen as a weight function on \widetilde{C}_n. In this paper, we
give the description for all the left and two-sided cells of the specific weighted Coxeter group (\widetilde{C}_3,\widetilde{l}_6) and prove that each left cell in (\widetilde{C}_3,\widetilde{l}_6) is left-connected.

参考文献

[1]LUSZTIG G. {Hecke algebra with unequal parameters]~[M]. Providence:American Mathmatical Society, 2003.
[2]SHI J Y. {The cells of the affine Weyl group \widetilde{C]_n in a certain quasi-split case]~[J]. J Algebra, 2015(422): 697-729.
[3]HUANG Q, SHI J Y. {Some cells in the weighted Coxeter group(\widetilde{C]_n,\widetilde{l]_{2n+1])]~[J]. J Algebra, 2013(395):63-81.
[4]岳明仕. {拟分裂情形下仿射~Weyl~群~\widetilde{C]_4~的胞腔]~[J].华东师范大学学报: 自然科学版, 2013(1): 61-75.
[5]SHI J Y. {The Kazhdan-Lusztig cells in certain affine Weyl groups]~[M]. Berlin: Springer-Verlag, 1986.
[6]GREENE C. {Some partitions associated with a partially ordered set]~[J]. J Comb Theory (A), 1976(20): 69-79.
[7]HUANG Q. \text{Left cells in the weighted Coxeter group\widetilde{C]_n]~[J]. J East China Norm Univ, 2013(1): 91-103.
[8]黄谦. {某些加权的~Coxeter~群的左胞腔]~[D]. 上海: 华东师范大学数学系,2013.


[9]YUE M S. \text{Cells of the affine Weyl group \widetilde{C]_n in quasi-split case]~[J]. J East China Norm Univ, 2014(3): 77-92.
[10]YUE M S. \text{Cells of the weighted Coxeter group\widetilde{C]_n]~[J]. J East China Norm Univ, 2015(3): 38-46.
[11]YUE M S. \text{Left cells of weighted Coxeter group(\widetilde{C]_n,\widetilde{l]_{2n])]~[J]. Advances in Mathematics(China), 2015, 44(4): 505-518.
文章导航

/