以抗旱性较强的甘蓝型油菜Holiday为材料,在开花初期对油菜进行干旱胁迫处理,采用RTqPCR技术分析ABA2、BnSOS2、BnCS、CAM、CBF4、PIP1这6个油菜抗旱相关基因在干旱胁迫第1天、3天、5天、7天在根、茎、叶、花和青荚中的表达量.结果表明,干旱胁迫下,6个抗旱相关基因在油菜的不同器官中均出现了上调表达;在不同干旱胁迫下,各基因表达量呈现不同的变化趋势;在相同的器官中,各基因的表达量存在明显的不同,累积表达量表现为根中ABA2最大、CBF4最小,茎中CAM最大、CBF4最小,叶中PIP1最大、ABA2最小,花中CBF4最大、BnSOS2最小,青荚中BnCS最大,CBF4最小.说明植物在受到干旱胁迫时,不同的抗旱途径对干旱胁迫的响应程度是不同的;不同器官中各抗旱相关基因与胁迫时间的相关性分析表明,CAM基因在茎中的表达量、CBF4基因在花中的表达量与胁迫时间呈显著正相关.
The high droughttolerant variety Holiday was treated as the experimental material under drought stress in the early flower stage. The expression level of 6 droughtrelated genes (ABA2、BnSOS2、BnCS、 CAM、CBF4、PIP1) which were selected from different organs (root, stem, leaf, flower and green pod) at different stress times (1,3,5,7 days) were analyzed by qRT PCR technology. The result showed that the expression of six droughtresistant genes in different organs all increased under drought stress, and they presented different trends respectively under different drought stress. In the same organs, the expression of the six droughtresistant genes had obvious different. In root, the maximum cumulative expression value gene was ABA2, and the minimum cumulative expression value gene was CBF4; in stem, the maximum was CAM, the minimum was CBF4; in leaf, the maximum was PIP1, the minimum was ABA2; in flower, the maximum was CBF4, the minimum was BnSOS2; in green pod, the maximum was BnCS, the minimum was CBF4. It suggested that different drought resistance pathway played〖JP2〗 different role under drought stress. The correlation analysis between expression values of droughtrelated genes and stress time showed that the expression quantity of CAM gene in the stem volume, CBF4 gene in the flowers was significantly positively related to the stress time.
[1]杨春杰,程勇,邹崇顺,等.模拟干旱胁迫下不同甘蓝型油菜品种发芽能力的配合力与遗传效应分析[J].作物学报,2008,34(10):17441749.
[2]SELVAM J N, KUMARAVADIVEL N, GOPIKRISHNAN A, et al. Identification of a novel drought tolerance gene in Gossypium hirsutum L. cv KC3[J]. Commun Biometry Crop Sci, 2009, 4(1): 913
[3]YAN A H, ZHANG L F, ZHANG Y W, et al. Early stage SSH library construction of wheat near isogenic line TcLr19 under the stress of Puccinia recondita f. sp. Tritici[J]. Front Agric China, 2009, 3(2): 146151
[4]ISLAM M A, DU H, NING J, et al. Characterization of Glossy 1homologous genes in rice involved in leaf wax accumulation and drought resistance[J]. Plant Mol Biol, 2009, 70(4): 443456
[5]YUE G D, ZHANG Y L, LI Z X, et al. Differential gene expression analysis of maize leaf at heading stage in response to waterdeficit stress[J]. Bioscie Rep, 2008, 28(3): 125134
[6]ZHANG G Y, CHEN M, LI L C, et al. Overexpression of the soybean GmERF3 gene, and AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco[J]. J Exp Bot, 2009, 60(13): 37813796
[7]YU Q, HU Y, LI J ,et al. Sense and antisense expression of plasma membrane aquaporin BnPIP1 from Brassia napus L. in tobacco and its effects on plant drought resistance[J]. Plant Sci, 2005, 169: 647656
[8]童晋,詹高淼,王新发,等.油菜柠檬酸合酶基因的克隆及在逆境下的表达[J].作物学报,2009,35(1):3340.
[9]HAAKE VCOOK D, RIECHMANN J L. Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis[J]. Plant Physiol, 2002,130(2): 639648.
[10]BOUCHE N, YELLIN A, SNEDDEN W A, et al. Plantspeeific calmodulinbinding proteins[J]. Annual Review of Plant Biology,2005,56:435466.
[11]AUDRAN C, BOREL C, FREY A, et al. Expression studies of the zeaxanthin epoxidase gene in Nicotiana plumbaginifolia[J]. Plant Physiol,1998,118:10211028.
[12]ZHU J K. Plant salt tolerance[J].Trends Plant Sci,2001,6(2):6671.
[13]CHEN X, TRUKSA M, SHAH S, et al. A survey of quantitative realtime polymerase chain reaction internal reference genes for expression studies in Brassica napus L.[J]. Analytical Biochemistry, 2010, 405(1):138140.
[14]PFAFFL M W. A new mathematical model for relative quantification in realtime RTPCR[J]. Nucleic Acids Research, 2001,29(9):45
[15]张喆,白鹏,肖通,等.甘蓝型油菜P5CSb和OAT基因在干旱胁迫下的表达分析[J].西北农业学报,2013,22(9):6573.
[16]桂月晶.油菜抗旱指标筛选及抗旱相关基因的表达分析[D].河南开封:河南大学,2011.
[17]LIU J, ISHITANI M, HALFTER U, et al. The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance [J]. Proc Natl Acad Sci USA, 2000, 97(7):37303734.
[18]TAKEZAWA D, LIU Z H, AN G, et al. Calmodulin gene family in potato: developmental and touchinduced expression of mRNA encoding a novel isoform[J]. Plant Mol Biol, 1995, 27(4):693703.
[19]LEE S H, KIM J C, LEE M S, et al. Identification of a novel divergent calmodulin isoform from soybean which has differential ability to activate calmodulindependent enzymes[J]. J Biol Chem, 1995, 270(37): 2180621812.
[20]YANG T, SEGAL G, ABBO S, et al. Characterization of the calmodulin gene family in wheat: structure,chromosomal location, and evolutionary aspects[J]. Mol Gen Genet,1996, 252(6): 684694.
[21]孙丰宾,魏继承,刘瀛,等.白桦钙调蛋白基因CaM的分离及其转录表达[J].经济林研究,2011,29(4):612.
[22]李丽娟,赵奂,李艳军,等.植物中的DREB类转录因子[J].首都师范大学学报:自然科学版,2006,27(5):6167.
[23]沙琴.干旱胁迫和盐胁迫诱导玉米CaM基因表达基因与ABA、H2O2的关系[D].南京:南京农业大学,2008.