生命科学

干旱胁迫下甘蓝型油菜相关抗旱基因的表达分析

  • 何巧丽 ,
  • 张喆 ,
  • 冉春燕 ,
  • 谢小玉
展开
  • 西南大学 农学与生物科技学院 三峡库区生态环境教育部重点实验室 南方山地农业教育部工程研究中心, 重庆400716
何巧丽,女,硕士研究生,研究方向为植物生理与分子生物学. Email: hql1211@126.com.

收稿日期: 2014-12-10

  网络出版日期: 2016-03-10

基金资助

国家自然科学基金(31271673);公益性行业(农业)科研专项201503127;重庆市自然科学基金(CSTC2010BB1012)

Expression analysis of Brassica napus L. droughtrelated genes under drought stress

  • HE Qiao-Li ,
  • ZHANG Zhe ,
  • RAN Chun-Yan ,
  • XIE Xiao-Yu
Expand

Received date: 2014-12-10

  Online published: 2016-03-10

摘要

以抗旱性较强的甘蓝型油菜Holiday为材料,在开花初期对油菜进行干旱胁迫处理,采用RTqPCR技术分析ABA2、BnSOS2、BnCS、CAM、CBF4、PIP1这6个油菜抗旱相关基因在干旱胁迫第1天、3天、5天、7天在根、茎、叶、花和青荚中的表达量.结果表明,干旱胁迫下,6个抗旱相关基因在油菜的不同器官中均出现了上调表达;在不同干旱胁迫下,各基因表达量呈现不同的变化趋势;在相同的器官中,各基因的表达量存在明显的不同,累积表达量表现为根中ABA2最大、CBF4最小,茎中CAM最大、CBF4最小,叶中PIP1最大、ABA2最小,花中CBF4最大、BnSOS2最小,青荚中BnCS最大,CBF4最小.说明植物在受到干旱胁迫时,不同的抗旱途径对干旱胁迫的响应程度是不同的;不同器官中各抗旱相关基因与胁迫时间的相关性分析表明,CAM基因在茎中的表达量、CBF4基因在花中的表达量与胁迫时间呈显著正相关.

本文引用格式

何巧丽 , 张喆 , 冉春燕 , 谢小玉 . 干旱胁迫下甘蓝型油菜相关抗旱基因的表达分析[J]. 华东师范大学学报(自然科学版), 2016 , 2016(1) : 113 -122 . DOI: 10.3969/j.issn.10005641.2016.01.015

Abstract

The high droughttolerant variety Holiday was treated as the experimental material under drought stress in the early flower stage. The expression level of 6 droughtrelated genes (ABA2、BnSOS2、BnCS、 CAM、CBF4、PIP1) which were selected from different organs (root, stem, leaf, flower and green pod) at different stress times (1,3,5,7 days) were analyzed by qRT PCR technology. The result showed that the expression of six droughtresistant genes in different organs all increased under drought stress, and they presented different trends respectively under different drought stress. In the same organs, the expression of the six droughtresistant genes had obvious different. In root, the maximum cumulative expression value gene was ABA2, and the minimum cumulative expression value gene was CBF4; in stem, the maximum was CAM, the minimum was CBF4; in leaf, the maximum was PIP1, the minimum was ABA2; in flower, the maximum was CBF4, the minimum was BnSOS2; in green pod, the maximum was BnCS, the minimum was CBF4. It suggested that different drought resistance pathway played〖JP2〗 different role under drought stress. The correlation analysis between expression values of droughtrelated genes and stress time showed that the expression quantity of CAM gene in the stem volume, CBF4 gene in the flowers was significantly positively related to the stress time.

参考文献

[1]杨春杰,程勇,邹崇顺,等.模拟干旱胁迫下不同甘蓝型油菜品种发芽能力的配合力与遗传效应分析[J].作物学报,2008,34(10):17441749.

[2]SELVAM J N, KUMARAVADIVEL N, GOPIKRISHNAN A, et al. Identification of a novel drought tolerance gene in Gossypium hirsutum L. cv KC3[J]. Commun Biometry Crop Sci, 2009, 4(1): 913

[3]YAN A H, ZHANG L F, ZHANG Y W, et al. Early stage SSH library construction of wheat near isogenic line TcLr19 under the stress of Puccinia recondita f. sp. Tritici[J]. Front Agric China, 2009, 3(2): 146151 

[4]ISLAM M A, DU H, NING J, et al. Characterization of Glossy 1homologous genes in rice involved in leaf wax accumulation and drought resistance[J]. Plant Mol Biol, 2009, 70(4): 443456

[5]YUE G D, ZHANG Y L, LI Z X, et al. Differential gene expression analysis of maize leaf at heading stage in response to waterdeficit stress[J]. Bioscie Rep, 2008, 28(3): 125134 

[6]ZHANG G Y, CHEN M, LI L C, et al. Overexpression of the soybean GmERF3 gene, and AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco[J]. J Exp Bot, 2009, 60(13): 37813796

[7]YU Q, HU Y, LI J ,et al. Sense and antisense expression of plasma membrane aquaporin BnPIP1 from Brassia napus L. in tobacco and its effects on plant drought resistance[J]. Plant Sci, 2005, 169: 647656

[8]童晋,詹高淼,王新发,等.油菜柠檬酸合酶基因的克隆及在逆境下的表达[J].作物学报,2009,35(1):3340.

[9]HAAKE VCOOK D, RIECHMANN J L. Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis[J]. Plant Physiol, 2002,130(2): 639648.

[10]BOUCHE N, YELLIN A, SNEDDEN W A, et al. Plantspeeific calmodulinbinding proteins[J]. Annual Review of Plant Biology,2005,56:435466.

[11]AUDRAN C, BOREL C, FREY A, et al. Expression studies of the zeaxanthin epoxidase gene in Nicotiana plumbaginifolia[J]. Plant Physiol,1998,118:10211028.

[12]ZHU J K. Plant salt tolerance[J].Trends Plant Sci,2001,6(2):6671.

[13]CHEN X, TRUKSA M, SHAH S, et al. A survey of quantitative realtime polymerase chain reaction internal reference genes for expression studies in Brassica napus L.[J]. Analytical Biochemistry, 2010, 405(1):138140.

[14]PFAFFL M W. A new mathematical model for relative quantification in realtime RTPCR[J]. Nucleic Acids Research, 2001,29(9):45

[15]张喆,白鹏,肖通,等.甘蓝型油菜P5CSb和OAT基因在干旱胁迫下的表达分析[J].西北农业学报,2013,22(9):6573.

[16]桂月晶.油菜抗旱指标筛选及抗旱相关基因的表达分析[D].河南开封:河南大学,2011.

[17]LIU J, ISHITANI M, HALFTER U, et al. The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance [J]. Proc Natl Acad Sci USA, 2000, 97(7):37303734.

[18]TAKEZAWA D, LIU Z H, AN G, et al. Calmodulin gene family in potato: developmental and touchinduced expression of mRNA encoding a novel isoform[J]. Plant Mol Biol, 1995, 27(4):693703.

[19]LEE S H, KIM J C, LEE M S, et al. Identification of a novel divergent calmodulin isoform from soybean which has differential ability to activate calmodulindependent enzymes[J]. J Biol Chem, 1995, 270(37): 2180621812.

[20]YANG T, SEGAL G, ABBO S, et al. Characterization of the calmodulin gene family in wheat: structure,chromosomal location, and evolutionary aspects[J]. Mol Gen Genet,1996, 252(6): 684694.

[21]孙丰宾,魏继承,刘瀛,等.白桦钙调蛋白基因CaM的分离及其转录表达[J].经济林研究,2011,29(4):612.

[22]李丽娟,赵奂,李艳军,等.植物中的DREB类转录因子[J].首都师范大学学报:自然科学版,2006,27(5):6167.

[23]沙琴.干旱胁迫和盐胁迫诱导玉米CaM基因表达基因与ABA、H2O2的关系[D].南京:南京农业大学,2008.
文章导航

/