河口海岸学

长江口深水航道工程南导堤越堤通量时空变化数值研究

  • 许鹏 ,
  • 葛建忠 ,
  • 丁平兴 ,
  • 付桂
展开
  • 1.华东师范大学 河口海岸学国家重点实验室,上海200062;2.上海长江口航道管理局,上海200003
许鹏,男,硕士研究生,研究方向为物理海洋学. 

收稿日期: 2015-02-11

  网络出版日期: 2016-07-25

基金资助

海洋公益性行业科研专项(2015015172);

长江口北支水沙盐输运模拟技术研究(2013BAB12B03);

国家自然科学基金(51320105005)

Numerical simulation about temporal and spatial variations of overtopping flow flux at the south leading jetty in the deep waterway project of the Changjiang Estuary

  • XU Peng ,
  • GE Jian-Zhong ,
  • DING Ping-Xing ,
  • FU Gui
Expand

Received date: 2015-02-11

  Online published: 2016-07-25

摘要

在长江口北槽深水航道工程的背景下,以实测地形资料为基础,利用FVCOM,模拟南导堤越堤水流的时空变化.通过对越堤流过水断面通量的计算,分析工程前后越堤流的时空变化规律.导堤丁坝的修建,使得南北槽之间的水动力条件显著改变,工程之后,横向水流净通量指向北槽,且量值较大.越堤水流的沿程分布,以导堤转角为界,上半段逐渐减小,下半段逐渐增大,上半段净通量小于下半段;越堤流的净通量,在季节上变幅不大,在潮周期内呈周期性波动,净通量与潮位呈良好的线性相关.

本文引用格式

许鹏 , 葛建忠 , 丁平兴 , 付桂 . 长江口深水航道工程南导堤越堤通量时空变化数值研究[J]. 华东师范大学学报(自然科学版), 2016 , 2016(2) : 112 -127 . DOI: 10.3969/j.issn.1000-5641.2016.02.014

Abstract

A numerical model based on the insitu measured topographic data was implemented, using the unstructuredgrid, threedimensional primitive equation, finitevolume coastal ocean model (FVCOM) including a dikegroyne module, for the study of temporal and spatial variations of overtopping flow at the south leading jetty constructed in the deep waterway channel. We investigated the temporal and spatial changes of overtopping flow by computing crosssection water flux before and after the project. The hydrodynamic condition around the north passage showed noticeable changes after the building of dikes and groynes. After the construction, respectively, net lateral current between the two channels points to the north passage with a relatively large amount of discharge. As estimated, spatially varying unit width net overtopping water flux had a significant feature, which was bounded at the corner, showed that the flux increased gradually at the upper half and decreased at the latter with a larger value. On a time scale the amplitude appeared no remarkable changes seasonally but on the other hand paced periodically in a tidal cycle. Moreover, the results showed a strong linear correlation between net water flux and tidal level.

参考文献

[1]刘猛,李为华. 长江口北槽深水航道回淤量变化宏观动力原因分析[J]. 水运工程,2013(3):129139.

[2]戚定满,顾峰峰,孔令双,等. 长江口深水航道整治工程影响数值研究[J]. 水运工程,2012(2):9096.

[3]潘灵芝,丁平兴,葛建忠. 长江口深水航道整治工程影响下北槽河床冲淤变化分析[J]. 泥沙研究,2011(5):5159.

[4]谈泽炜,范期锦,郑文燕,等. 长江口北槽航道回淤问题的分析[J]. 水运工程,2009(6):91102.

[5]杜景龙,杨世伦,张文祥,等.长江口北槽深水航道工程对九段沙冲淤影响研究[J].海洋工程,2005,23(3):7883.

[6]王兆华,杜景龙.长江口深水航道一、 二期工程建设以来北槽河段的冲淤演变[J].海洋通报,2006,25(6):5562.

[7]刘杰,徐志杨,赵德招,等.长江口深水航道(一、 二期工程)回淤变化[J].泥沙研究,2009(2):2228.

[8]胡静. 长江河口水沙分流和输移的探讨[D]. 上海:华东师范大学,2007.

[9]上海河口海岸科学研究中心.长江口12.5m航道回淤时空变化规律研究[R].上海:上海河口海岸科学研究中心,2013.

[10]上海河口海岸科学研究中心.长江高浊度河段航道淤积机理及近底水沙监测技术研究[R]. 上海:上海河口海岸科学研究中心,2014.

[11]葛建忠.MultiScale FVCOM Model System for the East China Sea and Changjiang Estuary and its Applications[D].上海:华东师范大学河口海岸科学研究院,2010.

[12]GE J, CHEN C, QI J, et al. A dikegroyne algorithm in a terrainfollowing coordinate ocean model (FVCOM): Development, validation and application [J]. Ocean Modelling, 2012, doi:10.1016/j.ocemod.2012.01.006.

[13]范中亚.长江口深水航道整治工程对流场、盐度场影响的数值模拟研究[D].上海:华东师范大学河口海岸科学研究院,2011.

[14]〖JP2〗刘猛,吴华林,李为华,等. 长江口北槽南导堤越堤输沙运动时空变化特征研究[J]. 海洋学报,2013,35(2):161167.〖JP〗

[15]刘猛,吴华林,李为华,等. 长江口深水航道工程南导堤越堤水沙运动观测研究[J]. 海洋工程,2011,29(2):129134.

[16]胡志锋,贾晓,吴华林,等. 九段沙北侧输沙对长江口深水航道的影响[J]. 水运工程,2013(11):9599.

[17]刘高峰. 长江口水沙运动及三维泥沙模型研究[D]. 上海:华东师范大学,2011.
文章导航

/