受潮汐影响的弯道泥沙输运表现出与径流弯道不一样的现象. 本文运用通量分解机制法,以黄浦江河口大潮期间实测水文资料为基础,对黄浦江河口受潮汐影响的弯曲河道水沙输运进行机制分析. 结果表明,黄浦江河口水沙输运受弯道环流影响可分为纵向输运和横向输运. 纵向水体潮周期净输运因径流作用指向口外,泥沙潮周期净输运因潮泵输运大于平流输运指向口内. 潮周期横向水体净输运和泥沙净输运均指向凸岸,其中横向水体输运以欧拉输运为主,横向泥沙属于以平流项为主. 通过比较水量输运的纵横比和泥沙输运的纵横比可得黄浦江河口大潮期间水量潮周期横向净输运大于纵向,泥沙是纵向大于横向. 说明潮泵输运在黄浦江河口大潮期间起主导作用.
Sediment transports in a bend channel affected by the tide are different from those dominated by the riverine flow. This paper used the flux decomposition mechanism method to examine the water and sediment transports in the Huangpu River Estuary, basing on the field observations in the 2002 flood season. The results showed that the water and sediment transports in the Huangpu River Estuary consisted of longitudinal and transversetransportsinduced by the secondary flow.The net water transport averaged over a tidal cycle points to the ebb direction, and the net sediment transport points to upstream dominated by the tidal pumping effect. The net transport of both water and sediment across the channel over a tidal cycle direct to the convex bank, in which an Euler transport predominated in water transport, and an advection transport controled sediment transport.Compared the longitudinal with the transverse water and sediment transport fluxes, we found that the crosschannel net water transports were bigger than alongchannel fluxes over a flood tidal cycle while crosschannel sediment transport fluxes were smaller than alongchannel fluxes, which implied that the tidal pumping played the major role in the net transports of sediment in the flood season.
[1]上海市水文总站. 黄浦江潮位分析(修编)[R].上海:上海市水文总站,2004.
[2]上海市水利工程设计研究院有限公司. 黄浦江河口建闸黄浦江河口选址可能性专题研究[R].上海:上海市水利工程设计研究院有限公司,2014.
[3]卢永金. 上海市防御台风战略对策探讨[J] . 城市道桥与防洪, 2007(4): 2933.
[4]上海市防汛信息中心课题组. 国内外沿海河口大城市防洪防潮标准及对策措施的调研[R]. 上海: 上海市防汛信息中心, 2000.
[5]陈美发. 黄浦江河口建闸工程规划研究[J] . 水利水电科技进展, 2001, 21(5): 1213.
[6]曾庆华.关于弯道的底沙运动问题[J]. 泥沙研究,1982(3):5964.
[7]张红武,吕昕.弯道水力学[M].北京:水利电力出版社,1993.
[8]吴祥柏,汪亚平,潘少明. 长江河口悬沙与盐分输运机制分析[J].海洋学研究,2008,26(5),819.
[9]高建华,汪亚平,潘少明,等. 长江口悬沙动力特征与输运模式[J].海洋通报,2005,24(5):8 15.
[10]刘高峰,朱建荣,沈焕庭,等. 河口涨落潮槽水沙输运机制研究[J].泥沙研究, 2005(5),5157.
[11]沈健,沈焕庭,潘定安,等. 长江河口最大混浊带水沙输运机制分析[J].地理学报,1995,50(5): 411420.
[12]王康善,苏纪兰. 长江口南港环流及悬移物质输运的计算分析[J] . 海洋学报,1987,9(5):627637.
[13]SHEN H T, HU H, CANNON G A. Flow and mixing in the mouth of the Changjiang Estuary [C]//Proceedings of International Symposium on Sedimentation of Continental Shelf with Special Reference to the East China Sea. Beijing:China Ocean Press, 1983:148158.
[14]时伟荣,李九发. 长江河口南北槽输沙机制及混浊带发育分析[J] . 海洋学报,1993,12(4) : 6976.
[15]沈焕庭. 长江河口物质通量[M] . 北京:海洋出版社,2001:41.
[16]吴华林,沈焕庭,朱建荣. 河口泥沙通量研究综述[J].泥沙研究, 2001(5),7379.
[17]朱首贤. 流、浪模式和物质长期输运分离研究[D].上海:华东师范大学, 2005.
[18]LI L, ZHU J R, WU H, et al. Lateral saltwater intrusion in the North Channel of the Changjiang Estuary[J]. Estuaries and Coasts,2014,37(1):3655.
[19]吴辉 ,朱建荣.长江河口北支倒灌盐水输送机制分析[J]. 2007,29(1): 1725
[20]DYER K R. Estuaries: A Physical Introduction[M].2nd ed. Singapore: John Wiley & Sons,1997:195.
[21]上海海事大学. 黄浦江河口船舶航行现状观测调查报告[R].上海:上海海事大学,2014.
[22]宋永港,卢永金,李路. 潮汐作用下弯道环流的数值模拟[J].水动力学研究与进展,2015,30(3):314323.