地理学

再论河湖连通关系

  • 赵军凯 ,
  • 李立现 ,
  • 张爱社 ,
  • 李九发
展开
  • 1. 九江学院 旅游与国土资源学院 鄱阳湖生态经济研究中心,江西 九江332005; 2. 华东师范大学 河口海岸学国家重点实验室,上海200062

收稿日期: 2015-07-17

  网络出版日期: 2016-09-29

基金资助

国家自然科学基金(41361003);江西省教育厅科技项目(GJJ14733);九江学院科技项目(2014KJYB031)

Discussions of the River-Lake Interconnected Relationship Connotation

  • ZHAO Jun-kai ,
  • LI Li-xian ,
  • ZHANG Ai-she ,
  • LI Jiu-fa
Expand
  • 1. College of Tourism and Territorial Resources, Poyang Lake Eco Economic Research Center, Jiujiang University, Jiujiang Jiangxi 332005, China; 2. State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China

Received date: 2015-07-17

  Online published: 2016-09-29

摘要

基于厘清河湖连通关系内涵相关认识的基础上,讨论了河湖连通关系的不同类型、“量质交换”、诸动态“流”、演变规律和生态功能.认为:在河湖连通系统中,河湖之间有着“量质交换”,它是河湖之间最基本的物质和能量交换关系;河湖之间存在物质流(水、溶解物质、泥沙、生物,污染物等)、能量流(水位、流量、流速等)、信息流(随水流、生物和人类活动而产生的信息流动等)和价值流(航运、发电、饮用和灌溉等);诸种“流”在自然和人类活动的影响下,以河湖水系连通为纽带,进行河湖之间的“量质交换”,实现河湖相互作用;河湖之间的水沙等“量质交换”是河湖连通关系演变的途径和动力之一;河湖连通关系演化最终趋于相对稳定状态,即动态平衡.在河湖系统中,任何一个要素发生变化,其余各要素就会发生连锁反应,形成反馈,从而影响整个系统功能的发挥,最终会影响流域内防洪、生态、资源利用和环境保护.正确认识河网水系的连通关系,对河湖水系连通工程的建设和地方政府水资源部门的决策具有一定的参考价值.

本文引用格式

赵军凯 , 李立现 , 张爱社 , 李九发 . 再论河湖连通关系[J]. 华东师范大学学报(自然科学版), 2016 , 2016(4) : 118 -128 . DOI: 10.3969/j.issn.1000-5641.2016.04.014

Abstract

Interconnected river system network is proposed as a new national water control strategy in the new era, thus study on the connotation and theory of interconnected river system network has become the focus of scientific research. The classification system of riverlake interconnected relationship, various kinds of dynamic “flows” and “the material and energy interchange” and the interactions between rivers and lake were discussed in this paper. And the evolution ways, patterns, the ecological functions of the riverlake interconnected system were also discussed in this paper, etc. Based on these things, the authors had defined clearly the connotation of the riverlake interconnected relationship in this paper. In riverlake interconnected system, the authors considered that there is “the material and energy interchange”, which is the first and foremost material and energy exchange relationship between rivers and lakes. The authors also point out that there are multiple flows between rivers and lakes, viz. material flows (water, dissolved substance, sediment, organisms, contaminants, etc.), energy flows (water level, discharge, velocity, etc.), information flows (information generated with the water flows, organisms and human activities, etc.) and value flows (shipping, power generation, drinking and irrigation, etc.). Under the disturbance of natural and human activities conditions, these flows are based on the connection of rivers and lakes, proceeding “the material and energy interchange” (watersediment exchange, etc.) between rivers and lakes, implementing the riverlake interactions. It is the watersediment exchange of “the material and quantity interchange” between rivers and lakes that is one of the approach and the direct driving forces for evolution of the riverlake interconnected relationship. The river lake interconnected relationship’s evolution tends to relative steady state in the end, which is an ideal dynamic balance. If any changing of whichever elements in river lake interconnected system happened, the others must occur the chain reaction, forming feedback, which affects on the function playing of the whole system, eventually will affect on preventing a flood and fighting a drought, ecological balance, resource utilization and environmental protection in a watershed. We should correctly recognize the river lake interconnected relationship of river network, which has some reference values for the construction of riverlake interconnection project and the water resources department of local government’s decision.

参考文献

[1] LUDWIG F, SLOBBE E V, COFINO W. Climate change adaptation and Integrated Water Resource Management in the water sector [J]. Journal of Hydrology, 2014,518:235-242.
[2]SHAMIR E, MEGDAL S B, CARRILLO C, et al. Climate change and water resources management in the Upper Santa Cruz River, Arizona [J]. Journal of Hydrology, 2015,521:18-33.
[3]崔国韬,左其亭.河湖水系连通与最严格水资源管理的关系[J].南水北调与水利科技,2012,10(2):129-132.
[4]左其亭,胡德胜,窦明,等.基于人水和谐理念的最严格水资源管理制度研究框架及核心体系[J].资源科学,2014,36(5):906-912.
[5]陈雷.关于几个重大水利问题的思考:在全国水利规划计划工作会议上的讲话[J].中国水利, 2010(4):1-7.
[6]陈雷.全面贯彻中央重大决策部署努力开创水利改革发展新局面:在全国水利厅局长会议上的讲话[EB/OL]. (20140104)[2015-07-01]. http://www.mwr.gov.cn/slzx/slyw/201401/t20140105_546787.html. 
[7]王中根,李宗礼,刘昌明,等.河湖水系连通的理论探讨[J].自然资源学报,2011,26(3):523-529.
[8]徐宗学,庞 博.科学认识河湖水系连通问题[J].中国水利, 2011,16 :13-16.
[9]李宗礼,李原园,王中根,等.河湖水系连通研究:概念框架[J].自然资源学报, 2011,26(3):513-522.
[10]长江水利委员会.维护健康长江,促进人水和谐研究报告[R] .武汉:长江水利委员会, 2005.
[11]施勇,栾震宇,陈炼钢,等.长江中下游江湖关系演变趋势数值模拟[J].水科学进展,2010,21(6):832-839.
[12]李原园,郦建强,李宗礼,等河湖水系连通研究的若干问题与挑战[J].资源科学,2011,33(3):386-391.
[13]崔国韬,左其亭,李宗礼,等.河湖水系连通功能及适应性分析[J].水电能源科学,2012(2):1-5.
[14]李宗礼,李原园,王中根,等.河湖水系连通研究:概念框架[J].自然资源学报, 2011,26(3):513-522.
[15]李宗礼,郝秀平,王中根,等.河湖水系连通分类体系探讨[J].自然资源学,2011,26( 11): 1975-1982.
[16]窦明,崔国韬,左其亭,等.河湖水系连通的特征分析[J].中国水利, 2011,16:17-19.
[17]夏军,高扬,左其亭,等.河湖水系连通特征及其利弊[J].地理科学进展,2012, 31(1):16-31.
[18]李爽,张祖陆,孙媛媛.基于SWAT 模型的南四湖流域非点源氮磷污染模拟[J].湖泊科学,2013,25(2) :236-242.
[19]李景保,周永强,欧朝敏,等.洞庭湖与长江水体交换能力演变及对三峡水库运行的响应[J].地理学报,2013,68(1): 108-117.
[20]张欧阳,卜惠峰,王翠平,等.长江流域水系连通性对河流健康的影响[J].人民长江, 2010,41(2 ):1-5.
[21]仲志余,胡维忠.试论江湖关系[J].人民长江, 2008,39(1):20-22.
[22]赵高峰,周怀东,胡春宏,等. 鄱阳湖水利枢纽工程对鱼类的影响及对策[J].中国水利水电科学研究院学报,2011,9(4):262-266.
[23]赵军凯,李九发,蒋陈娟,等.长江中下游河湖水量交换过程[J].水科学进展, 2013, 24(6):759-770.
[24]郭华,HU Q,张奇.近50年来长江与鄱阳湖水文相互作用的变化[J].地理学报,2011,66(5):609-618.
[25]KARIM F, DUTTA D, MARVANEK S, et al. Assessing the impacts of climate change and dams on floodplain inundation and wetland connectivity in the wet-dry tropics of northern Australia [J]. Journal of Hydrology, 2015, 522:80-94.
[26]胡春宏,王延贵.三峡工程运行后泥沙问题与江湖关系变化[J].长江科学院院报, 2014, 31(5):107-116.
[27]朱宏富.从自然地理特征探讨鄱阳湖的综合治理和利用[J].江西师范大学学报(自然科学版),1982,1:42-56.
[28]KRISTENSEN E A, KRONVANG B, WIBERGLARSEN P, et al. 10 years after the largest river restoration project in Northern Europe: Hydromorphological changes on multiple scales in River Skjern [J]. Ecological Engineering, 2014, 66:141-149.
[29]LEVINE R, MEYER G A. Beaver dams and channel sediment dynamics on Odell Creek, Centennial Valley, Montana, USA [J]. Geomorphology, 2014, 205:51-64
[30]李景保,尹辉,卢承志,等.洞庭湖区的泥沙淤积效应[J].地理学报,2008, 63(5):514-523.
[31]姜加虎,黄群.洞庭湖近几十年来湖盆变化及冲淤特征[J].湖泊科学,2004,16(3):209-214.
[32]闵骞,占腊生. 1952-2011年鄱阳湖枯水变化分析[J].湖泊科学,2012,24(5):675-678.
[33]戴志军,李九发,赵军凯,等.特枯2006年长江中下游径流特征及江湖库径流调节过程[J].地理科学, 2010, 30(4):577-581.
[34]BHAVE A G, MISHRA A, RAGHUWANSHI N S. A combined bottomup and topdown approach for assessment of climate change adaptation options [J]. Journal of Hydrology, 2014, 518:150-161
[35]MURPHY K W,ELLIS A W. An assessment of the stationarity of climate and stream flow in watersheds of the Colorado River Basin [J]. Journal of Hydrology, 2014, 509:454-473.
[36]LI Y F, GUO Y, YU G. An analysis of extreme flood events during the past 400 years at Taihu Lake, China [J]. Journal of Hydrology, 2013, 500:217-225.
[37]卢金友.荆江三口分流分沙变化规律研究[J].泥沙研究, 1996(4):54-61.
[38]李义天,郭小虎,唐金武,等.三峡建库后荆江三口分流的变化[J].应用基础与工程科学学报, 2009,17(1):21-31.
[39]李学山,王翠平.荆江与洞庭湖水沙关系演变及对城螺河段水情影响分析[J].人民长江, 1997, 28(8):6-8.
[40]XU K H, MILLIMAN J D. Seasonal variations of sediment discharge from the Yangtze River before and after impoundment of the Three Gorges Dam [J]. Geomorphology, 2009, 104:276-283.
[41]JAMES C K. Floodplain sedimentation in the Upper Mississippi Valley: Natural versus human accelerated [J]. Geomorphology, 2006, 79:286-310.
[42]GAO J H, JIA J J, KETTNER A J, et al. Changes in water and sediment exchange between the Changjiang River and Poyang Lake under natural and anthropogenic conditions, China [J]. Science of the Total Environment, 2014, 481:542-553.
[43]欧阳履泰.试论下荆江河曲的发育与稳定[J].泥沙研究,1983(4):1-12.
[44]张欧阳,熊文,丁洪亮.长江流域水系连通特征及其影响因素分析[J].人民长江, 2010,41(1):1-5.
[45]周葆华,操璟璟,朱超平,等.安庆沿江湖泊湿地生态系统服务功能价值评估[J].地理研究,2011,30(12):2296-2304.
[46]张阳武.长江流域湿地资源现状及其保护对策探讨[J].林业资源管理,2015(3):39-44.
[47]马占东,高航,杨俊,等.基于多源数据融合的南四湖湿地生态系统服务功能价值评估[J].资源科学,2014,36(4):840-847.
[48]陈萍,王兴玲,陈晓玲.基于栅格的鄱阳湖生态经济区洪灾脆弱性评价[J].地理科学,2012,32(8):958-964.
[49]尹辉,杨波,蒋忠诚,等.近60年洞庭湖泊形态与水沙过程的互动响应[J].地理研究,2012,31(3):471-483.
[50]欧朝敏,李景保,余果,等.水沙过程变异下洞庭湖系统功能的连锁响应[J].地理科学,2011,31(6):654-660.
[51]崔丽娟.鄱阳湖湿地生态系统服务功能价值评估研究[J].生态学杂志,2004,23(4):47-51.
[52]张翼然,周德民,刘苗.中国内陆湿地生态系统服务价值评估:以71个湿地案例点为数据源[J].生态学报,2015,35(13):4279-4286.

文章导航

/