计算机科学

基于数据关联的分布式对象代理数据库划分方法

  • 王 敏 ,
  • 彭承晨 ,
  • 李蓉蓉 ,
  • 彭煜玮
展开
  • 武汉大学 计算机学院, 武汉 430072

收稿日期: 2016-06-24

  网络出版日期: 2016-11-29

基金资助

国家自然科学基金重点项目(61232002)

Data correlation-based partition approach for distributed deputy database

  • WANG Min ,
  • PENG Cheng-chen ,
  • LI Rong-rong ,
  • PENG Yu-wei
Expand
  • Computer School, Wuhan University, Wuhan 430072, China

Received date: 2016-06-24

  Online published: 2016-11-29

摘要

对象代理数据库是一种先进的具有复杂信息管理能力的数据库系统, 随着数据量的剧增, 实现其分布式存储变得十分重要. 然而, 对象代理数据库中的数据存在着很强的关联性, 如果按照传统数据划分方式进行分布式存储, 将导致查询效率低下. 针对这一问题, 本文提出了一种基于关联的高效数据划分方法: 首先根据代理层次将关联对象聚集成对象簇, 每个簇对应一个存储文件; 然后提取对象簇的模式特征和语义特征, 通过聚类算法将对象簇集划分为 k 个子集分配到各存储节点. 将本文方法与随机分布式存储方法进行了比较实验, 结果证明本文方法在查询效率方面具有明显优势.

本文引用格式

王 敏 , 彭承晨 , 李蓉蓉 , 彭煜玮 . 基于数据关联的分布式对象代理数据库划分方法[J]. 华东师范大学学报(自然科学版), 2016 , 2016(5) : 45 -55 . DOI: 10.3969/j.issn.1000-5641.2016.05.006

Abstract

Object deputy database (ODDB) is an advanced database system with strong ability of complex information processing. With the rapid development of data, distributed storage becomes more and more important to ODDB. However, there exist correlations between objects in ODDB, which makes the traditional data portioning method of distributed storage unsuitable. To solve this problem, we propose a data correlation-based partition approach for ODDB. Firstly, we cluster correlated objects according to the deputy tree, and each object cluster is considered as a heap file in storage. Secondly, on the basis of schema feature and semantic feature, we divide object clusters into k subsets using k-means, each subset is stored on one of the storage nodes. Finally, we compare our method with random distributed storage, the results show that our approach is obviously better in query efficiency.

参考文献

[ 1 ] PENG Z Y, KAMBAYASHI Y. Deputy mechanisms for object-oriented database[C]//Proceedings of the 11th International Conference on Data Engineering. 1995: 333-340.
[ 2 ] KAMBAYASHI Y, PENG Z Y. Object deputy model and its applications[C]//Proceedings of the 4th Inernational Conference on Database Systems for Advenced Applications. 1995: 1-15.
[ 3 ] 彭智勇, 黄泽谦,刘俊. 基于对象代理数据库的微生物信息服务系统[J]. 计算机应用,2010(1): 5-9.
[ 4 ] PENG Z Y, SHI Y, ZHAI B X. Realization of biological data management by object deputy database system[C]//Transaction on Computational Systems Biology V. Berlin: Springer, 2006: 49-67.
[ 5 ] 彭智勇, 彭煜玮, 翟博譞. 一个基于对象代理模型的多表现地信息系统[J]. 计算机应用, 2006(9):2016-2019.
[ 6 ] 彭智勇. Web数据管理系统: 201010140168.4[P]. 2010-09-15.
[ 7 ] MACQUEEN J. Some methods for classification and analysis of multivariate observations [C]//Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability. 1967: 281-297.
[ 8 ] ?黄泽谦. 对象代理数据库聚簇策略与查询优化技术研究[D].武汉: 武汉大学, 2011.
[ 9 ] BAIAO F, MATTOSO M, ZAVERUCHA G. A distribution design methodology for object DBMS[J]. Distributed and Parallel Databases, 2004,16(1): 45-90.
[10] OZSU M T, VALDURIEZ P. Principles of Distributed Database Systems[M]. New York: Springer-Verlag, 2002.
[11] NAVATHE S B, RA M. Vertical partitioning for database design: A graphical algorithm[J]. ACM Sigmod Record, 1989, 18(2): 440-450.
[12] EZEIFE C, BARKER K. A comprehensive approach to horizontal class fragmentation in a distributed object based system[J]. International Journal of Distributed and Parallel Databases, 1995(3): 247-272.
[13] ?施源, 彭智勇, 庄继峰, 等. 对象关系数据库中OID回收机制[J].计算机科学, 2004, 31(10): 566-568+581.
[14] SHAMEEM M U S, FERDOUS R. An efficient k-means algorithm integrated with Jaccard distance measure for document clustering[C]//Proceedings of the Asian Himalayas International Conference on Internet. 2009: 1-6.
[15] WEIL S A. Ceph: Reliable, scalable, and high-performance distributed storage[D]. Santa Cruz: University of California Santa Cruz, 2007.

文章导航

/