A new algorithm for constructing soliton solution and its implementation
Received date: 2015-11-03
Online published: 2017-01-13
结合 Painleve 分析, 进一步改进了简单 Hirota 方法. 改进后的算法能够适用于更多方程和方程组. 基于该方法, 在符号计算软件 Maple 平台下研发了软件 ZASP, 将新方法求解非线性演化方程的过程自动化. 通过若干应用实例, 介绍了 ZASP 的使用, 也验证了 ZASP 作为研究非线性演化方程工具的有效性.
关键词: 简单 Hirota 方法; 非线性演化方程; 孤子解
赵文强 , 柳银萍 . 构造孤子解的新算法及其实现[J]. 华东师范大学学报(自然科学版), 2016 , 2016(6) : 127 -138 . DOI: 10.3969/j.issn.1000-5641.2016.06.014
Combined with the Painlev´e test, the simple Hirota method was improved. The improved algorithm can be applied to more equations. Based on this method, a
software named ZASP was developed with the aid of the symbolic computation software Maple. ZASP can solve nonlinear evolution equation automatically. By applying it to several examples, it can be seen that the program ZASP is an effective and efficient tool for calculating soliton solutions of nonlinear evolution equations.
[ 1 ] HIROTA R. Exact soliton of the Korteweg-de Vries equation for multiple collisions of solitons [J]. Physical Review Letters, 1971, 27(18): 1192-1194.
[ 2 ] SATSUMA J, ABLOWITZ M J. Two-dimensional lumps in nonlinear dispersive systems [J]. Journal of Mathematical Physics, 1979, 20(7): 1496-1503.
[ 3 ] NAKAMURA A. A direct method of calculating periodic wave solutions to nonlinear evolution equations I: Exact two-periodic wave solution [J]. Journal of the Physical Society of Japan, 1979, 47(5): 1701-1705.
[ 4 ] NAKAMURA A. A direct method of calculating periodic wave solutions to nonlinear evolution equations II: Exact one-and two-periodicWave solution of the coupled bilinear equations [J]. Journal of the Physical Society of Japan, 1980, 48(4): 1365-1370.
[ 5 ] HIROTA R, ITO M. Resonance of solitons in one dimension [J]. Journal of the Physical Society of Japan, 1983, 52(3): 744-748.
[ 6 ] HIETARINT J, HIROTA. Multidromion solutions to the Davey-Stewartson equation [J]. Physics Letters A, 1990, 145(5): 237-244.
[ 7 ] HIETARINT J. One-dromion solutions for generic classes of equations [J]. Physics Letters A, 1990, 149(2/3): 113-118.
[ 8 ] HEREMAN W, ZHUANG W. Symbolic computation of solitons with MACSYMA [C]. Journal of Computational and Applied Mathematics II: Differential equations, 1992: 287-296.
[ 9 ] HEREMAN W, ZHUANG W. A MACSYMA program for the Hirota method [C]//Proceedings of the 13th IMACS World Congress on Computation and Applied Mathematics. 1991: 22-26.
[10] WAZWAZ A M. Solitons and singular solitons for the Gardner-KP equation [J]. Applied Mathematics and Computation, 2008, 204(1): 162-169.
[11] WAZWAZ A M. Multiple soliton solutions and multiple singular soliton solutions for two integrable systems [J]. Physics Letters A, 2008, 372(46): 6879-6886.
[12] WAZWAZ A M. Multiple soliton solutions and multiple singular soliton solutions for (2+1)-dimensional shallow water wave equations [J]. Physics Letters A, 2009, 373(33): 2927-2930.
[13] WAZWAZ A M. Solitary wave solutions of the generalized shallow water wave (GSWW) equation by Hirota’s method, tanh-coth method and Exp-function method [J]. Applied Mathematics and Computation, 2008, 202(1): 275-286.
[14] WAZWAZ A M. Regular soliton solutions and singular soliton solutions for the modified Kadomtsev-Petviashvili equations [J]. Applied Mathematics and Computation, 2008, 204(1): 227-232.
[15] WAZWAZ A M. Multiple-soliton solutions for the Calogero-Bogoyavlenskii-Schiff, Jimbo-Miwa and YTSF equations [J]. Applied Mathematics and Computation, 2008, 203(2): 592-597.
[16] WAZWAZ A M. Multiple soliton solutions for three systems of broer-kaup-kupershmidt equations describing nonlinear and dispersive long gravity waves [J]. Modern Physics Letters B, 2012, 26(20): 3305-3307.
[17] GILSON C, LAMBERT F, NIMMO J, et al. On the Combinatorics of the Hirota D-operators [J]. Proceedings of the Royal Society A Mathematical Physical & Engineering Sciences, 1996, 452(1945): 223-234.
[18] LAMBERT F, SPRINGAEL J. Construction of Backlund transformations with binary Bell polynomials [J]. Journal of the Physical Society of Japan, 1997, 66(8): 2211-2213.
[19] LAMBERT F, LEBLE S, SPRINGAEL J. Binary Bell Polynomials and Darboux covariant Lax pairs [J]. Glasgow Mathematical Journal, 2001, 43(A): 53-63.
[20] LAMBERT F, SPRINGAEL J. Classical Darboux transformations and the KP hierarchy [J]. Inverse Problems, 2001, 17(4): 1067-1074.
[21] LAMBERT F, SPRINGAEL J, COLIN S, et al. An elementary approach to hierarchies of soliton equations [J]. Journal of the Physical Society of Japan, 2007, 76(5): 1086-1102.
[22] LAMBERT F, SPRINGAEL J. Soliton equations and simple combinatorics [J]. Acta Applicandae Mathematicae, 2008, 102(2-3): 147-178.
[23] FAN E G. Binary Bell polynomials approach to the integrability of nonisospectral and variable-coefficient non-linear equations [J/OL]. arXiv preprint, 2010, 4194(1008): 39-39.http://arxiv.org/abs/1008.4194.
[24] FAN E G. New bilinear Backlund transformation and Lax pair for the supersymmetric two-Boson equation [J]. Studies in Applied Mathematics, 2011, 127(3): 284-301.
[25] FAN E G, CHOW W K. Darboux covariant Lax pairs and infinite conservation laws of the (2+1)-dimensional breaking soliton equation [J]. Journal of Mathematical Physics, 2011, 52(2): 023504-023504-10.
[26] 王红艳, 胡星标. 带自相容源的孤立子方程~[M]. 北京: 清华大学出版社,2008.
[27] HU X B, WANG D L, TAM W H, et al. Soliton solutions to the Jimbo-Miwa equations and the Fordy-Gibbons-Jimbo-Miwa equation [J]. Physics Letters A, 1999, 262(S4/5): 310-320.
[28] HU X B, WANG D L, QIAN X M. Soliton solutions and symmetries of the 2+1 dimensional Kaup-Kupershmidt equation [J]. Physics Letters A, 1999, 262(262): 409-415.
[29] CHEN D Y, ZHANG D J, DENG S F. The novel multi-soliton solutions of the MKdV-Sine Gorden eqations [J]. Journal of the Physical Society of Japan, 2002, 71(2): 658-659.
[30] CHEN D Y, ZHANG D J, DENG S F. Remarks on some solutions of soliton equations [J]. Journal of the Physical Society of Japan, 2002, 71(8): 2072-2073.
[31] ZHANG D J, CHEN D Y. The N-soliton solutions of the Sine-Gordon equation with self-consistent sources [J]. Physica A Statistical Mechanics & Its Applications, 2003, 321(3-4): 467-481.
[32] 周振江. 可积系统孤子解的符号计算研究~[D].上海: 华东师范大学, 2012.
[33] 张丽. 非线性演化方程孤子解的符号计算研究~[D].上海: 华东师范大学, 2014.
[34] 杨云青. 可积系统与混沌系统中若干问题的符号计算研究~[D].上海: 华东师范大学, 2011.
[35] 胡晓瑞. 非线性系统的对称性与可积性~[D]. 上海: 华东师范大学,2012.
[36] 王云虎. 基于符号计算的可积系统的若干问题研究~[D]. 上海:华东师范大学, 2013.
[37] 苗倩. 对称优化和Bell多项式的程序算法~[D]. 上海: 华东师范大学,2014.
[38] 杨铎.Painlevé分析和函数展开法在非线性偏微分方程求解中的应用~[D].浙江宁波: 宁波大学, 2014.
[39] 徐桂琼. 非线性演化方程的精确解与可积性研究及其符号计算研究~[D].上海: 华东师范大学, 2004.
[40] 刘山亮, 王文正. 用广田法求扩充的非线性薛定谔方程的精确孤子解~[J].量子电子学报, 1997, 14(2): 144-149.
[41] 吴妙仙, 王晓芬, 张翼. Hirota方法求解KdV-mKdV混合方程的多孤子解~[J].浙江外国语学院学报, 2008, 3(2): 69-74.
/
〈 |
|
〉 |