物理学

Ni80Fe20镀层对Fe73.5Cu1Nb3Si13.5B9非晶条带的巨磁阻抗效应的影响

  • 韩洋 ,
  • 吕文星 ,
  • 赵振杰
展开
  • 华东师范大学 物理系 纳光电集成与先进装备教育部工程研究中心, 上海 200062

收稿日期: 2015-12-16

  网络出版日期: 2017-01-13

基金资助

国家自然科学基金(51302085, 11574084, 51572086)

Magneto-impedance effect of amorphous Fe73.5Cu1Nb3Si13.5B9 ribbons with Ni80Fe20 permalloy film

  • HAN Yang ,
  • LYU Wen-xing ,
  • ZHAO Zhen-jie
Expand
  • Department of Physics, Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200062, China

Received date: 2015-12-16

  Online published: 2017-01-13

摘要

采用磁控溅射镀膜工艺, 在Fe73.5Cu1Nb3Si13.5B9非晶条带的光滑面上溅射了 130~650 nm厚的Ni80Fe20薄膜, 制备了一系列 Ni80Fe20 / Fe73.5Cu1Nb3Si13.5B9复合结构样品. 研究了镀层厚度对材料的镀层形貌、巨磁阻抗效应(Giant Magneto-Impedance, GMI)和磁滞回线的影响. 结果发现, 镀层厚度为 260nm 厚时, 样品的表面形貌最平整致密, 最大磁阻抗比提高到 33.0%. 在玻璃基片上溅射了相同厚度的系列Ni80Fe20薄膜, 其磁滞回线结果发现薄膜的各向异性方向随着厚度的增加由平行表面转变成垂直于表面. 正是Ni80Fe20镀层各向异性的方向改变, 影响了镀层与条带间的相互作用, 进而影响复合结构样品的磁阻抗效应.

本文引用格式

韩洋 , 吕文星 , 赵振杰 . Ni80Fe20镀层对Fe73.5Cu1Nb3Si13.5B9非晶条带的巨磁阻抗效应的影响[J]. 华东师范大学学报(自然科学版), 2017 , 2017(1) : 71 -79 . DOI: 10.3969/j.issn.1000-5641.2017.01.009

Abstract

Different thickness of Ni80Fe20 films are deposited on the Fe73.5Cu1Nb3Si13.5B9 amorphous ribbons using RF (radio frequency) magnetron sputtering method. The magnetic properties and magneto impedance effect are measured and compared with as-cast Fe73.5Cu1Nb3Si13.5B9 amorphous ribbons. The results show that the ribbon coated with 260 nm Ni80Fe20 layer achieves a much better performance than others, which produces a GMI (giant magneto-impedance) ratio of 33.0%. It is found that the surface of 260 nm Ni80Fe20 layer is smoother and the particle size is relatively smaller. The hysteresis loops of the ribbons with and without Ni80Fe20 coating layer are almost unchanged. However, the hysteresis loops of the Ni80Fe20 films sputtered onto glass substrate indicate the shift of anisotropy direction from parallel to normal to the surface as the thickness increases. The shifting will influence the magnetic exchange interaction between the amorphous ribbons and the Ni80Fe20 coating layers. The variation of GMI effect can be interpreted by the surface structure and magnetic exchange interaction.

参考文献

[ 1 ] MOHRI K, KOHSAWA T, KAWASHIMA K, et al. Magneto-inductive effect (MI effect) in amorphous wires [J].IEEE Transactions on Magnetics, 1992, 28(5): 3150-3152.
[ 2 ] CHEN D L, ZHAO Z J, JIANG L, et al. Effect of rotating direction and interval on giant magneto-impedance of sputtered Ni80Fe20/Cu composite wires [J]. Surface Review and Letters, 2011, 18(06): 223-227.
[ 3 ] CHIRIAC H, CORODEANU S, DONAC A, et al. Influence of cold drawing on the magnetic properties and giant magneto-impedance response of FINEMET nanocrystalline wires [J]. Journal of Applied Physics, 2015, 117(17):17A-314A.
[ 4 ] WU Z M, ZHAO Z J, LIU L P, et al. Enhancement of giant magento-impedance effect using LC resonance [J].Surface Review and Letters, 2008, 15(01n02): 87-90.
[ 5 ] ZHUKOV A, IPATOV M, CHURYUKANOVA M, et al. Giant magneto-impedance in thin amorphous wires: From manipulation of magnetic field dependence to industrial applications [J]. Journal of Alloys and Compounds,2014, 586: S279-S286.
[ 6 ] GARC´IA-CHOCANO V M, GARC´IA-MIQUEl H. DC and AC linear magnetic field sensor based on glass coated amorphous microwires with giant magneto-impedance [J]. Journal of Magnetism and Magnetic Materials, 2015, 378: 485-492.
[ 7 ] ZHANG Q, MAO Q M, RUAN J Z, et al. Giant magneto-impedance effect of magnetron sputtered Ni80Fe20/Cu composite wires [J]. Surface Review and Letters, 2008, 15(6): 753-756.
[ 8 ] CO¨ISSON M, TIBERTO P, VINAI F, et al. Penetration depth and magnetic permeability calculations on GMI effect and comparison with measurements on CoFeB alloys [J]. Journal of Magnetism and Magnetic Materials, 2008, 320(3): 510-514.
[ 9 ] GUO H Q, KRONM¨ ULLER H, DRAGON T, et al. Influence of nanocrystallization on the evolution of domain patterns and the magneto-impedance effect in amorphous Fe73.5Cu1Nb3Si13.5B9 ribbons [J]. Journal of Applied Physics, 2001, 89(1): 514-520.
[10] TINH N H, DUNG N V, NGHI N H, et al. Influence of Nb substitution for Fe on the magnetic and magnetoimpedance properties of amorphous and annealed Fe76.5-xSi13.5B9Cu1Nbx(x=0-7) ribbons [J]. Physica B: Condensed Matter, 2012, 407(18): 3790-3796.
[11] GONA M N, YANASE S, HASHI S, et al. Magneto-impedance effect in nanocrystalline FeZrNbB ribbons [J]. Journal of magnetism and magnetic materials, 2003, 254: 466-468.
[12] YOON S S, KIM C G, JANG K J, et al. Effect of annealing field orientation on GMI profiles in Co-based amorphous ribbon [J]. IEEE Transactions on Magnetics, 2000, 36(5): 2872-2874.
[13] BRUNETTI L, TIBERTO P, VINAI F, et al. High-frequency giant magneto impedance in joule-heated Co-based amorphous ribbons and wires [J]. Materials Science and Engineering: A, 2001, 304: 961-964.
[14] KAVIRAJ B, GHATAK S K. Influence of microwave annealing on GMI response and magnetization of an amorphous Fe73.5Nb3Cu1Si13.5B9 ribbon [J]. Solid State Communications, 2006, 140(6): 294-298.
[15] PANINA L V, MOHRI K. Magneto-impedance effect in amorphous wires [J]. Applied Physics Letters, 1994, 65(9): 1189-1191.
[16] LI B, SALEM N P M H, GIOUROUDI I, et al. Integration of thin film giant magneto-impedance sensor and surface acoustic wave transponder [J]. Journal of Applied Physics, 2012, 111(7): 7E-514E.
[17] CHEN L, ZHOU Y, LEI C, et al. Effect of sputtering parameters and sample size on giant magneto-impedance effect in NiFe and NiFe/Cu/NiFe films [J]. Materials Science and Engineering: B, 2010, 172(2): 101-107.
[18] JIANG L, TAN L S, RUAN J Z, et al. Intermittent deposition and interface formation on the microstructure and magnetic properties of NiFe/Cu composite wires [J]. Physica B: Condensed Matter, 2008, 403(18): 3054-3058.
[19] NING N, FAN J, WU J, et al. NiFe/insulator/Cu composite wires and their giant magneto-impedance effects [J]. Surface Review and Letters, 2010, 17(03): 369-373.
[20] CHEN D L, LI X, PAN H L, et al. Magneto-impedance effect of composite wires prepared by chemical plating under DC current [J]. Nano-Micro Letters, 2014, 6(3): 227-232.
[21] LAURITA N, CHATURVEDI A, BAUER C, et al. Enhanced giant magneto-impedance effect and field sensitivity in Co-coated soft ferromagnetic amorphous ribbons [J]. Journal of Applied Physics, 2011, 109(7): 7C-706C.
[22] CHEN D, LI X, JI X, et al. Magneto-impedance effect of the Ni80Fe20/Cu composite wires: The influence of DC current imposed on the Cu base [J]. AIP Advances, 2014, 4(6): 67133.
[23] LIU Y, SELLMYER D J, SHINDO D. Handbook of Advanced Magnetic Materials [M]. Berlin: Springer Science & Business Media, 2008.
[24] LI X P, SEET H L, FAN J, et al. Electrodeposition and characteristics of Ni80Fe20/Cu composite wires [J]. Journal of Magnetism and Magnetic Materials, 2006, 304(1): 111-116.

文章导航

/