Application of BRDF model in land cover mapping
Received date: 2016-03-07
Online published: 2017-01-13
植被的反射异质性特征可以反映植被的结构和光谱特性, 有助于更有效地识别植被. 在塔里木河下游开展的研究中, 使用了 MISR 的多角度观测数据, 利用核驱动和RPV 模型反演获取地表 BRDF 信息, 使用 SVM 方法对 MISR 天底角反射率数据和 BRDF 信息组合进行土地覆被分类研究, 对比分析了 BRDF 对分类效果的影响. 发现:① BRDF 信息可以为半干旱区土地覆被制图提供附加的有用信息, 提高制图的精度. ② 核驱动模型和 RPV 模型都能较好地模拟研究区地表反射的状况. ③ 空间结构差异较大的草地和林地类型使用 BRDF 信息后的用户精度明显提高.
杨雪峰 , 叶 茂 , 毛东雷 . 二向反射模型在土地覆被制图中的应用[J]. 华东师范大学学报(自然科学版), 2017 , 2017(1) : 113 -124 . DOI: 10.3969/j.issn.1000-5641.2017.01.013
The reflection heterogeneity of vegetation can reflect the structural and spectral characteristics of vegetation, and therefore it can help to identify vegetation more effectively.Misr multi-angle observation data has been explored in the sutdy of the lower Tarim River.Meanwhile, the kernel driven and RPV model inversion is used to obtain information of surface BRDF, and SVM method is used to study the land use and the cover of classification by the combination of MISR nadir reflectance data and BRDF information. By comparative analysis of the effect of the BRDF of the classification results,the findings are as following: BRDF information can provide additional information for the land cover mapping in the semi-arid area and improve the accuracy of the mapping. Both the kernel driven model and the RPV model can simulate the surface reflection in the study area. After using BRDF, the identification accuracy of grassland and forest land increased obviously.
Key words: BRDF; kernel driven model; RPV; misr; the lower Tarim river
[ 1 ] ROSS J. The Radiation Regime and Architecture of Plant Stands[M]. Boston, MA: W Junk, 1981.
[ 2 ] MYNENI R B, ASRAR G. Radiative transfer in three-dimensional atmosphere vegetation media[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 1993, 49: 585-598.
[ 3 ] CHEN J M, CIHLAR J. Quantifying the effect of canopy architecture on optical measurements of leaf area index using two gap size analysis methods[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33:777-787.
[ 4 ] MARTONCHIK J V, BRUEGGE C J, STRAHLER A H. A review of reflectance nomenclature used in remote sensing[J]. Remote Sensing Reviews, 2000, 19: 9-20.
[ 5 ] LI X, STRAHLER A H. Geometric-optical modeling of a conifer forest canopy[J]. IEEE Transactions on Geoscience & Remote Sensing, 1985, ge-23(5): 705-721.
[ 6 ] ASNER G P. Contributions of multi-view angle remote sensing to land-surface and biogeochemical research[J].Remote Sensing Review, 2000, 18: 137-162.
[ 7 ] LIANG S, STRAHLER A H. Land surface bi-directional reflectance distribution function (BRDF): Recent advances and future prospects[J]. Remote Sensing Reviews, 2000, 18: 83-511.
[ 8 ] MARTONCHIK J V, PINTY B, VERSTRAETE M M. Note on: An improved model of surface BRDFatmospheric coupled radiation[J]. IEEE Transactions on Geosciences and Remote Sensing, 2002, 40: 1637-1639.
[ 9 ] WANNER W, LI X, STRAHLER A H. On the derivation of kernels for kernel driven models of bidirectional reflectance[J]. Journal of Geophysical Research, 1995, 100: 21077-21090.
[10] ROUJEAN J L, LEROY M, DESCHAMPS P Y. A bidirectional reflectance model of the Earth’s surface for the correction of remote sensing data[J]. Journal of Geophysical Research, 1992, 97: 20455-20468.
[11] LOVELAND T R, REED B C, BROWN J F, et al. Development of a global land cover characteristics database and IGBP DIScover from 1 km AVHRR data[J]. International Journal of Remote Sensing, 2000, 21: 1303-1330.
[12] LANGLEY S K, CHESHIRE H M, HUMES K S. A comparison of single date and multitemporal satellite image classifications in a semi-arid grassland[J]. Journal of Arid Environments, 2001, 49: 401-411.
[13] CHOPPING M J, RANGO A, RITCHIE J C. Improved semi-arid community type differentiation with the NOAA AVHRR via exploitation of the directional signal[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40: 1132-1149.
[14] SU L, CHOPPING M J, RANGO A, et al. Differentiation of semi-arid vegetation types based on multi-angular observations from MISR and MODIS[J]. International Journal of Remote Sensing, 2007, 28: 1419-1424.
[15] XAVIER A S, GALVAO L S. View angle effects on the discrimination of selected Amazonian land cover types from a principal-component analysis of MISR spectra[J]. International Journal of Remote Sensing, 2005, 26: 3797-3811.
[16] LIESENBERG V, GALVAO L S, PONZONI F J. Variations in reflectance with seasonality and viewing geometry: Implications for classification of Brazilian savanna physiognomies with MISR/Terra data[J]. Remote Sensing of Environment, 2007, 107(1/2): 276-286.
[17] 阿布都沙拉木·加拉力丁, 克力木·买买提, 海米提·依米提. 塔里木河流域胡杨保护区土地覆盖变化研究[J].干旱区资源与环境, 2010, 24(1): 154-157.
[18] BUHE A, TSUCHIYA K, KANEKO M, et al. Land cover of oases and forest in XinJiang, China retrieved from ASTER data[J]. Advances in Space Research, 2007, 39(1): 39-45.
[19] 黄粤, 包安明, 王士飞,等.间歇性输水影响下的2001-2011年塔里木河下游生态环境变化[J]. 地理学报,2013, 68(9): 1251-1262.
[20] DINER D J, MARTONCHIK J V, BOREL C, et al. Multi-angle Imaging Spectro-Radiometer Level Surface Retrieval Algorithm Theoretical Basis Document[EB/OL]. [2016-02-01]. http://eospso.gsfc.nasa.gov/eos_homepage/for sc_ientists/atbd/docs/MISR/atbd-misr-10.pdf.
[21] DINER D, BECKERT J, REILLY T, et al. Multi-angle Imaging Spectro Radiometer (MISR):Instrument description and experiment overview[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(4): 1072-1087.
[22] RAHMAN H, DEDIEU G. SMAC: A simplified method for the atmospheric correction of satellite measurements in the solar spectrum[J]. International Journal of Remote Sensing, 1994, 15(1): 123-143.
[23] RAHMAN H, PINTY B, VERSTRAETE M M. Coupled surface-atmosphere reflectance (CSAR) model 2.Semiempirical surface model usable with NOAA Advanced Very High 93 Resolution Radiometer data[J]. Journal of Geophysical Research, 1993, 98: 20791-20801.
[24] MARTONCHIK, JOHN V. Determination of aerosol optical depth and land surface directional reflectances using multiangle imagery[J]. Journal of Geophysical Research Atmospheres, 1997, 102(D14): 17015-17022.
[25] ROBERTS G. A review of the application of BRDF models to infer land cover parameters at regional and global scales[J]. Progress in Physical Geography, 2001, 25(4): 483-511.
[26] VAPNIK V. The Nature of Statistical Learning Theory[M]. New York: Springer–Verlag, 1995.
[27] MOUNTRAKIS G, IM J, OGOLE C. Support vector machines in remote sensing: A review[J]. Isprs Journal of Photogrammetry & Remote Sensing, 2011, 66(3): 247-259.
[28] CHANG C C, LIN C J. LIBSVM: A library for support vector machines[J]. Acm Transactions on Intelligent Systems & Technology, 2011, 2(3): 389-396.
[29] LUCHT W, SCHAAF C B, STRAHLER A H. An algorithm for the retrieval of albedo from space using semiempirical BRDF models[J]. IEEE Transactions on Geoscience & Remote Sensing, 2000, 38(2): 977-998.
[30] CHOPPING M J.Testing LiSK BRDF models over a semi-arid grassland region with visible and near-infrared ATSR-2 and AVHRR data[J].International Journal of Remote Sensing, 2001, 22(17): 3533-3552.
[31] LAVERGNE T, KAMINSKI T, PINTY B, et al. Application to MISR land products of an RPV model inversion package using adjoint and Hessian codes[J]. Remote Sensing of Environment, 2007, 107(1/2): 362-375.
/
〈 |
|
〉 |