收稿日期: 2016-01-05
网络出版日期: 2017-03-23
基金资助
国家自然科学基金(11474097)
Ultrafast imaging of femtosecond laser-induced periodic ripples on the surface of silver film
Received date: 2016-01-05
Online published: 2017-03-23
采用440 nm空间分辨、亚皮秒时间分辨的泵浦探测成像技术,本文研究了800 nm飞秒激光脉冲照射银膜表面后亚波长周期条纹的形成动力学.分析了1~6个飞秒脉冲照射下银膜表面条纹结构的演化过程.第一个激光脉冲在薄膜表面诱导凹槽等缺陷结构;第二个激光脉冲以后表面开始出现亚波长周期条纹,并且在更多脉冲照射时进行纵向和横向生长.条纹在50~70 ps以后开始出现,随延迟时间增加不断加深变长,在演化过程中条纹位置保持不变;形成过程在1 000 ps内基本结束.研究结果表明,飞秒激光在薄膜表面诱导凹槽等缺陷结构在后面的激光脉冲照射表面过程中激发了表面等离激元,进而导致的周期性能量沉积在亚波长周期条纹形成过程中起了关键作用,材料表面的熔化导致了之前形成的条纹变浅以及部分消失.
郗慧霞 , 周侃 , 贾天卿 , 孙真荣 . 飞秒激光在银膜表面诱导亚波长周期条纹的超快成像研究[J]. 华东师范大学学报(自然科学版), 2017 , 2017(2) : 89 -96 . DOI: 10.3969/j.issn.1000-5641.2017.02.012
This paper studies the dynamics of femtosecond laser-induced periodic ripples on silver film by a time-resolved pump-probe imaging method. After 1-6 pump pulses irradiation, the temporal evolution of the periodic ripples on sample surface is observed. The premier ripples appear in the initial 50-70 ps after the second fs laser irradiation, and the ripple positions keep unmoved until the formation processes is completed in 1 000 ps. The results indicate that the periodic deposition of laser energy during the interaction between femtosecond laser pulses and sample surface plays a dominant role in the formation of periodic ripples, which is caused by the excitation of surface plasmon polariton During the solidification process, some ripples become shallow and even disappear because of surface melting.
[1] BIRNBAUM M. Semiconductor surface damage produced by Ruby lasers[J]. J Appl Phys, 1965, 36(11):3688-3689.
[2] VOROBYEV A Y, GUO C L. Direct femtosecond laser surface nano/microstructuring and its applications[J]. Laser & Photonics Reviews, 2013, 7(3):385-407.
[3] BAO Z J, WANG C W, ZHANG Y, et al. Modification of wettability of stainless steel by picosecond laser surface microstructuring[J] Photonics Research, 2015, 3(4):180-183.
[4] 王浩竹, 杨丰赫, 杨帆, 等. 飞秒激光在金属钼表面诱导产生纳米量级周期条纹结构的研究 [J]. 中国激光, 2015, 42(1):99-105.
[5] EMMONY D C, HOWSON R P, WILLIS L J. Laser mirror damage in germanium at 10.6 um[J]. Appl Phys Lett, 1973, 23:598-600.
[6] SIPE J E, YOUNG J F, PRESTON J S, et al. Laser-induced periodic surface structure I Theory[J]. Phys Rev B, 1983, 27(2):1141-1154.
[7] SHIMOTSUMA Y, KAZANSKY P, QIU J R, et al. Self-organized nanogratings in glass irradiated by ultrashort light pulses[J]. Phys Rev Lett, 2003, 91(24):247405. DOI:10.1103/phsRevLett.91.247405.
[8] BOROWIEC A, HAUGEN H K. Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses[J]. Appl Phys Lett, 2003, 82(25):4462-4464.
[9] MIYAJI G, MIYAZAKI K. Origin of periodicity in nanostructuring on thin film surfaces ablated with femtosecond laser pulses[J]. Opt Express, 2008, 16:16265-16271.
[10] JIA X, JIA T Q, DING L E, et al. Complex periodic micro/nanostructures on 6 H-SiC crystal induced by the interference of three femtosecond laser beams[J]. Opt Lett, 2009, 34(6):788-790.
[11] MIYAJI G, MIYAZAKI K, ZHANG K F, et al. Mechanism of femtosecond-laser-induced periodic nanostructure formation on crystalline silicon surface immersed in water[J]. Opt Express, 2012, 20:14848-14856.
[12] HUANG M, ZHAO F L, CHENG Y, et al. Origin of laser-induced near subwavelength ripples:Interference between surface plasmons and incident Laser[J]. ACS Nano, 2009, 12(3):4062-4070.
[13] BONSE J, KRUGER J. Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon[J]. J Appl Phys, 2010, 108(3):034903. DOI:10.1063/1.3456501.
[14] BONSE J, ROSENFELD A, KRUGER J. On the role of surface plasmon polaritons in the formation of laserinduced periodic surface structures upon irradiation of silicon by femtosecond laser pulses[J]. J Appl Phys, 2009, 106(10):104910. DOI:10.1063/1.3261734.
[15] DUFFT D, ROSENFELD A, DAS S K, et al. Femtosecond laser-induced periodic surface structures revisited:A comparative study on ZnO[J]. J Appl Phys, 2009, 105:034908. DOI:10.1063/1.3074106.
[16] HWANG T Y, VOROBYEV A Y, GUO C L. Ultrafast dynamics of femtosecond laser-induced nanostructure formation on metals[J]. Appl Phys Lett, 2009, 95:123111. DOI:10.1063/1.3222937.
[17] WANG J C, GUO C L. Ultrafast dynamics of femtosecond laser-induced periodic surface pattern formation on metals[J]. Appl Phys Lett, 2005, 87:251914. DOI:10.1063/1.2146067.
[18] WANG J C, GUO C L.Numerical study of ultrafast dynamics of femtosecond laser-induced periodic surface structure formation on noble metals[J]. J Appl Phys, 2007, 102(5):053522. DOI:10.1063/1.2776004.
[19] DOWNER M C, FORK R L, SHANK C V. Femtosecond imaging of melting and evaporation at a photoexcited silicon surface[J]. J Opt Soc Am B, 1985(2):595-599.
[20] HOHM S, ROSENFELD A, KRUGER J, et al. Femtosecond diffraction dynamics of laser-induced periodic surface structures on fused silica[J]. Appl Phys Lett, 2013, 102(5):054102. DOI:10.1063/1.4790284.
[21] MURPHY R D, TORRALVA B, ADAMS D P, et al. Pump-probe imaging of laser-induced periodic surface structures after ultrafast irradiation of Si[J]. Appl Phys Lett, 2013, 103(14):141104. DOI:10.1063/1.4823588.
[22] JIA X, JIA T Q, PENG N N, et al. Dynamics of femtosecond laser-induced periodic surface structures on silicon by high spatial and temporal resolution imaging[J]. J Appl Phys, 2014, 115(14):143102. DOI:10.1063/1.4870445.
[23] JIA X, YUAN Y H, YANG D Q, et al. Ultrafast time-resolved imaging of femtosecond laser-induced periodic surface structures on GaAs[J]. Chinese Optics Letters, 2014, 12(11):113203. DOI:10.3788/COL201412.113203.
[24] 王振林. 表面等离激元研究新进展 [J], 物理学进展, 2009, 29(3):287-324.
/
〈 |
|
〉 |