生态与环境科学

三苯基锡对热带爪蟾胚胎的早期发育毒性

  • 吴粒铰 ,
  • 朱静敏 ,
  • 胡玲玲 ,
  • 施华宏
展开
  • 华东师范大学 河口海岸学国家重点实验室, 上海 200062
吴粒铰,女,硕士研究生,研究方向为环境毒理学.E-mail:somnus.smile@163.com

收稿日期: 2016-04-21

  网络出版日期: 2017-03-23

基金资助

国家自然科学基金(21277049)

Developmental toxicity of triphenyltin to Xenopus tropicalis embryo

  • WU Li-jiao ,
  • ZHU Jing-min ,
  • HU Ling-ling ,
  • SHI Hua-hong
Expand
  • State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China

Received date: 2016-04-21

  Online published: 2017-03-23

摘要

有机锡的外暴露能引起脊椎动物胚胎的独特畸形,但通过母体传递引起的内暴露毒性还缺乏研究.本文通过显微注射的方式研究了三苯基锡(TPT)、过氧化物酶体增殖体激活受体γ(PPARγ)的激动剂罗格列酮(Rosi)和抑制剂T0070907(C12H8ClN3O3)对热带爪蟾胚胎的发育毒性.将3种化合物注入S1-S2期的胚胎后,胚胎的存活率显著下降,其中5 ng TPT,80 ng Rosi和10 ngT0070907,注射组存活率分别为46.9%、42.7%和54.2%.胚胎的体长也受到不同程度的影响5 ng TPT,80 ng Rosi和20 ng T0070907注射组与对照相比体长分别减少了27%、22%和57%.3种化合物还引起了多样的畸形效应,尤其是头部变小及眼睛畸形.说明,PPARγ在热带爪蟾早期胚胎的发育特别是头、眼发育中扮演非常重要的角色.TPT与相近剂量T0070907引起的畸形非常相似,说明TPT的致畸机制可能与PPARγ存在某种关系.另一方面,利用整胚原位杂交检测了注射TPT后S20及S25期胚胎的头、眼部标志基因的空间表达,结果表明bf1、en2、krox20pax6的表达信号均随TPT剂量增大而逐渐变弱且区域变小,定量PCR进一步验证了TPT能在神经胚及早期尾牙期之前影响胚胎头、眼标志基因的表达.研究结果表明TPT的内暴露对脊椎动物胚胎具有较强的致畸效应和神经毒性.

本文引用格式

吴粒铰 , 朱静敏 , 胡玲玲 , 施华宏 . 三苯基锡对热带爪蟾胚胎的早期发育毒性[J]. 华东师范大学学报(自然科学版), 2017 , 2017(2) : 107 -115 . DOI: 10.3969/j.issn.1000-5641.2017.02.014

Abstract

Organotin compounds can lead to the unique malformations in vertebrate embryos after waterborne exposure, but the toxicity of organotin compounds to embryos through maternal transfer is still lack. In the present study, Xenopus tropicalis embryos were exposed to triphenyltin (TPT), the agonist (rosiglitazone, Rosi) and antagonist (T0070907) of peroxisome proliferator activated receptor gamma (PPARγ) through microinjection. Compared with the control, the survival rates and body length of embryos were significantly decreased in treatment groups. The survival rates were 46.9% (5 ng TPT), 42.7% (80 ng Rosi) and 54.2% (10 ng T0070907). The whole body lengths were reduced by 27% (5 ng TPT), 22% (80 ng Rosi) and 57% (20 ng T0070907). Three chemicals caused a variety of malformations including microcephaly, turbid lens of eyes and small eyes. These results indicated that PPARγ played an important role in embryonic development especially for eyes and brain development of Xenopus tropicalis. The phenotypes of malformation induced by TPT and T0070907 groups were highly identical, which suggested that the toxic mechanism of TPT might be related to PPARγ. After TPT treatment, brain and eye marker gene expression in embryos at stage20 and stage25 was detected using whole mount in situ hybridization. The results showed that en2, bf1, krox20 and pax6 expression regions were gradually decreased with the increase of the TPT doses. Quantitative PCR results further confirmed that TPT could affect the head and eye marker gene expression in neural and early tailbud stages. All the results indicated that organotin compounds showed high teratogenicity and neurotoxicity to vertebrate embryos.

参考文献

[1] YI A X, LEUNG K M Y, LAM M H W, et al. Review of measured concentrations of triphenyltin compounds in marine ecosystems and meta-analysis of their risks to humans and the environment[J]. Chemosphere, 2012, 89(9):1015-1025.
[2] JONES-LEPP T L, VARNER K E, HEGGEM D. Monitoring dibutyltin and triphenyltin in fresh waters and fish in the United States using micro-liquid chromatorgraphy-electrospray/ion trap mass spectrometry[J]. Arch Environ Con Tox, 2004, 46(1):90-95.
[3] LARANJEIRO F, SANCHEZ-MARIN P, BARROS A, et al. Triphenyltin induces imposex in Nucella lapillus through an aphallic route[J]. Aquat Toxicol, 2016, 175:127-131.
[4] DIMITRIOU P, CASTRITSI J. Acute toxicity effects of tributyltin chloride and triphenyltin chloride on gilthead seabream, Sparus aurata L, embryos[J]. Ecotox Environ Safe, 2003, 54(1):30-35.
[5] SHI H, ZHU P, SUN Z, et al. Divergent teratogenicity of agonists of retinoid X receptors in embryos of zebrafish (Danio rerio)[J]. Ecotoxicology, 2012, 21(5):1465-1475.
[6] YU L, ZHANG X, YUAN J, et al. Teratogenic effects of triphenyltin on embryos of amphibian (Xenopus tropicalis):A phenotypic comparison with the retinoid X and retinoic acid receptor ligands[J]. J Hazard Mater, 2011, 192(3):1860-1868.
[7] GUDHMUNDSDOTTIR L O, HO K K Y, LAM J C W, et al. Long-term temporal trends (1992-2008) of imposex status associated with organotin contamination in the dogwhelk Nucella lapillus along the Icelandic coast[J]. Mar Pollut Bull, 2011, 63(5):500-507.
[8] HU J, ZHANG Z, WEI Q, et al. Malformations of the endangered Chinese sturgeon, Acipenser sinensis, and its causal agent[J]. P Natl Acad Sci USA, 2009, 106(23):9339-9344.
[9] NASSEF M, KIM S G, SEKI M, et al. In ovo nanoinjection of triclosan, diclofenac and carbamazepine affects embryonic development of medaka fish (Oryzias latipes)[J]. Chemosphere, 2010, 79(9):966-973.
[10] COLMAN J R, TWINER M J, HESS P, et al. Teratogenic effects of azaspiracid-1 identified by microinjection of Japanese medaka (Oryzias latipes) embryos[J]. Toxicon, 2005, 45(7):881-890.
[11] GRUN F, WATANABE H, ZAMANIAN Z, et al. Endocrine-disrupting organotin compounds are potent inducers of adipogenesis in vertebrates[J]. Mol Endocrinal, 2006, 20(9):2141-2155.
[12] HIGLEY E, TOMPSETT A R, GIESY J P, et al. Effects of triphenyltin on growth and development of the wood frog (Lithobates sylvaticus)[J]. Aquat Toxicol, 2013, 144:155-161.
[13] HU L, ZHU J, ROTCHELL J M, et al. Use of the enhanced frog embryo teratogenesis assay-Xenopus (FETAX) to determine chemically-induced phenotypic effects[J]. Sci Total Environ, 2015, 508:258-265.
[14] YUAN J, ZHANG X L, YU L, et al. Stage-specific malformations and phenotypic changes induced in embryos of amphibian (Xenopus tropicalis) by triphenyltin[J]. Ecotoxicol Environ Saf, 2011, 74(7):1960-1966.
[15] TANIBE M, ISHIURA S I, ASASHIMA M, et al. xCOUP-TF-B regulates xCyp26 transcription and modulates retinoic acid signaling for anterior neural patterning in Xenopus[J]. Int J Dev Biol, 2012, 56(4):239-244.
[16] XENBASE. 爪蟾联盟数据库[DB/OL].[2016-03-20].http:www.xenbase.org.
[17] GONZALEZ-DONCEL M, FERNANDEZ-TORIJA C, HINTON D E, et al. Stage-specific toxicity of cypermethrin to medaka (Oryzias latipes) eggs and embryos using a refined methodology for an in vitro fertilization bioassay[J].Arch Environ Con Tox, 2004, 48(1):87-98.
[18] HANO T, OSHIMA Y, OE T, et al. Quantitative bio-imaging analysis for evaluation of sexual differentiation in germ cells of olvas-GFP/ST-II YI Medaka (Oryzias Latipes) nanoinjected in ovo with ethinylestradiol[J]. Environ Toxicol Chem, 2005, 24(1):70-77.
[19] NASSEF M, SANG G K, SEKI M, et al. In ovo nanoinjection of triclosan, diclofenac and carbamazepine affects embryonic development of medaka fish (Oryzias latipes)[J]. Chemosphere, 2010, 79(9):966-973.
[20] COLMAN J R, TWINER M J, HESS P, et al. Teratogenic effects of azaspiracid-1 identified by microinjection of Japanese medaka (Oryzias latipes) embryos[J]. Toxicon, 2005, 45(7):881-890.
[21] ERMAKOVA G V, SOLOVIEVA E A, MARTYNOVA N Y, et al. The homeodomain factor Xanf represses expression of genes in the presumptive rostral forebrain that specify more caudal brain regions[J]. Dev Biol, 2007, 307(2):483-497.
[22] RODRIGUEZ-SEGUEL E, ALARCON P, GOMEZ-SKARMETA J L. The Xenopus Irx genes are essential for neural patterning and define the border between prethalamus and thalamus through mutual antagonism with the anterior repressors Fezf and Arx[J]. Dev Biol, 2009, 329(2):258-268.
[23] WEI S, XU G, BRIDGES L C, et al. Roles of ADAM13-regulated Wnt activity in early Xenopus eye development[J]. Dev Biol, 2012, 363(1):147-154.
[24] DONG W, MACAULAY L J, KWOK K W H, et al. Using whole mount in situ hybridization to examine thyroid hormone deiodinase expression in embryonic and larval zebrafish:a tool for examining OH-BDE toxicity to early life stages[J]. Aquat Toxicol, 2013, 132:190-199.
[25] TERAOKA H, DONG W, OGAWA S, et al. 2, 3, 7, 8-Tetrachlorodibenzo-p-dioxin toxicity in the zebrafish embryo:Altered regional blood flow and impaired lower jaw development[J]. Toxicol Sci, 2002, 65(2):192-199.
[26] TONTONOZ P, SPIEGELMAN B M. Fat and beyond:The diverse biology of PPARγ[J]. Annu Rev Biochem, 2008, 77:289-312.
[27] EVANS R M, BARISH G D, WANG Y X. PPARs and the complex journey to obesity[J]. Nat Med, 2004, 10(4):355-361.
[28] KOSTADINOVA R, WAHLI W, MICHALIK L. PPARs in diseases:Control mechanisms of inflammation[J]. Curr Med Chem, 2005,12(25):2995-3009.
[29] RICOTE M, GLASS C K. PPARs and molecular mechanisms of transrepression[J]. Biochimica et Biophysica Acta, 2007, 1771(8):926-35.
[30] BONFANTI P, COLOMBO A, ORSI F, et al. Comparative teratogenicity of chlorpyrifos and malathion on Xenopus laevis development[J]. Aquat Toxicol, 2004, 70(3):189-200.
[31] SAKA M. Developmental toxicity of p, p'-dichlorodiphenyltrichloroethane, 2, 4, 6-trinitrotoluene, their metabolites, and benzo[a] pyrene in Xenopus laevis embryos[J]. Environ Toxicol Chem, 2004, 23(4):1065-1073.
[32] ZHANG S, GU H, HU N. Role of peroxisome proliferator-activated receptor γ in ocular diseases[J]. J Ophthalmol, 2015, 2015:1-10.
[33] KASTNER P, GRONDONA J M, MARK M, et al. Genetic analysis of RXR alpha developmental function:Convergence of RXR and RAR signaling pathways in heart and eye morphogenesis[J]. Cell, 1994, 78(6):987-1003.

文章导航

/