本文通过飞秒脉冲激光和铁铂异质结构的相互作用产生太赫兹(Terahertz,THz)脉冲,并利用时序太赫兹的测量方法,研究了太赫兹光在金属薄膜中的传播规律.太赫兹光在铁(Fe)膜和铂(Pt)膜中都以指数形式衰减,但是与金属体材料传播介质及适用于 体材料的Drude模型相比,2~10nm厚的铁、铂薄膜对太赫兹光的衰减系数明显增加.其原因可能是由于超薄薄膜中电子在膜厚方向的运动受限,而膜平面内的自由程增加,导致在膜平面内电场的衰减长度变小.该现象在近红外的飞秒脉冲光中同样存在.
This paper investigates the transmission of terahertz pulse in the ultrathin film with terahertz time-domain spectroscopy and the terahertz pulse produced by the interaction between femtosecond laser pulse and Fe/Pt heterostructure. The thickness of the Fe/Pt film ranges from 2 nm to 8 nm. The terahertz wave exponentially decays in Fe and Pt ultrathin films, but it decays much faster in the bulk Fe and Pt. Due to the limitation in the thickness, electrons have much longer free path in the film plane, which increases the conductivity in the film plane. We also find that the laser pulse with 800 nm wavelength also decays faster in the ultrathin film.
[1] WOLF S A, AWSCHALOM D D, BUHRMAN R A, et al. Spintronics: A spin-based electronics vision for the future [J]. Science, 2001, 5546(294): 1488-1495.
[2] STÖHR J, SIEGMAN H C. Magnetism: From Fundamentals to Nanoscale Dynamics [M]. Berlin: Springer, 2007.
[3] JANSEN R. Silicon spintronics [J]. Nature Materials, 2012, 11(5): 400-408.
[4] STRAATSMA C J E, JOHNSON M, ELEZZABI A Y. Terahertz spinplasmonics in random ensembles of Ni and Co microparticles [J]. Journal of Applied Physics, 2012, 112(10): 103904.
[5] KAMPFRATH T, BATTIATO M, MALDONADO P, et al. Terahertz spin current pulses controlled by magnetic heterostructures [J]. Nature Nanotechnology, 2013, 8(4): 256-260.
[6] MIAO B F, HUANG S Y, QU D, et al. Inverse spin Hall effect in a ferromagnetic metal [J]. Phys Rev Lett, 2013, 111(6): 066602.
[7] SKINNER T D, KUREBAYASHI H, FANG D, et al. Enhanced inverse spin-Hall effect in ultrathin ferromagnetic/normal metal bilayers [J]. Applied Physics Letters, 2013, 102(7): 072401.
[8] SEKI T, UCHIDA K, KIKKAWA T, et al. Observation of inverse spin Hall effect in ferromagnetic FePt alloys using spin Seebeck effect [J]. Applied Physics Letters, 2015, 107(9): 092401.
[9] BEAUREPAIRE E, TURNER G M, HARREL S M, et al. Coherent terahertz emission from ferromagnetic films excited by femtosecond laser pulses [J]. Applied Physics Letters, 2004, 84(18): 3465-3467.
[10] HUISMAN T J, MIKHAYLOVSKIY R V, TSUKAMOTO A, et al. Simultaneous measurements of terahertz emission and magneto-optical Kerr effect for resolving ultrafast laser-induced demagnetization dynamics [J]. Physical Review B, 2015, 92(10): 104419.
[11] CARVA K, BATTIATO M, LEGUT D, et al. Theory of femtosecond laser-induced demagnetization[C]//Ultrafast Magnetism I, Springer Proceedings in Physics 159: Proceedings of the International Conference UMC2013. New York: Springer, 2014: 111-114.
[12] CHAU K J, ELEZZABI A Y. Photonic anisotropic magnetoresistance in dense Co particle ensembles [J]. Phys Rev Lett, 2006, 96(3): 033903.
[13] KEESING R. Electrodynamics from Ampere to Einstein [J]. European Journal of Physics, 2001, 22(5): 561-562.
[14] DRUDE P. Zur elektronentheorie der metalle; II Teil: Galvanomagnetische und thermomagnetische effecte [J]. Annalen der Physik, 1900, 308(11): 369-402.
[15] RADI H A, RASMUSSEN J O. Principles of Physics [M]. Berlin: Springer, 1994.
[16] VORST A V, ROSEN A, KOTSUKA Y. Fundamentals of Electromagnetics [M]. [S.l.]: Wiley-IEEE Press, 2009.
[17] LAMAN N, GRISCHKOWSKY D. Terahertz conductivity of thin metal films [J]. Applied Physics Letters, 2008, 93(5): 051105.
[18] BATTIATO M, CARVA K, OPPENEER P M. Superdiffusive spin transport as a mechanism of ultrafast demagnetization[J]. Phys Rev Lett, 2010, 105(2): 027203.
[19] SEKI T, SUGAI I, HASEGAWA Y, et al. Spin Hall effect and Nernst effect in FePt/Au multi-terminal devices with different Au thicknesses [J]. Solid State Communications, 2010, 150(11/12): 496-499.
[20] MELNIKOV A, RAZDOLSKI I,WEHLING T O, et al. Ultrafast transport of laser-excited spin-polarized carriers in Au/Fe/MgO(001) [J]. Phys Rev Lett, 2011, 107(7): 076601.
[21] RUDOLF D, LA-O-VORAKIAT C, BATTIATO M, et al. Ultrafast magnetization enhancement in metallic multilayers driven by superdiffusive spin current [J]. Nature Communications, 2012, 3: 1037.