采用高频感应加热熔融快淬法制备了Fe73.5Cu1.0Nb3.0Si13.5B9非晶玻璃包裹丝.首先对制备态包裹丝进行电流退火,结果发现电流密度为4.2×107 A/m2时,退火得到的玻璃包裹丝性能最佳,原因是此时有合适的纳米晶体积比例.进而研究了长度对其磁性和巨磁阻抗效应的影响.结果表明,随着长度的减小,微丝的各项异性场增大,磁阻抗比减小.采用退磁场模型给予了合理解释.
Amorphous Fe73.5Cu1.0Nb3.0Si13.5B9 microwires are prepared by the Taylor-Ulitovsky method. Then, the as-prepared microwires are annealed by cuurent annealing. The best performance microwires are obtained at annealing current density of 4.2×107 A/m2 because of the suitable volume ratio between nanocrystalline and amorphous phases. Influence of length on giant magnetoimpedance effect and magnetic properties for microwires is then investigated. The results show that anisotropy field increases and the GMI ratio descreases with decreased length of the wire. Demagnetizing field model gives a reasonable explanation.
[1] PHAN M H, PENG H X. Giant magnetoimpedance materials: Fundamentals and applications[J]. Progress in Materials Science, 2008, 53(2): 323-420.
[2] 蒋颜玮, 房建成, 黄学功, 等. 巨磁阻抗传感器敏感材料的选择[J]. 功能材料, 2009, 40(1): 1-6.
[3] CHIRIAC H, ÓVÁRI T A. Amorphous glass-covered magnetic wires: preparation, properties, applications[J]. Progress in Materials Science, 1996, 40(5): 333-407.
[4] ZHUKOVA V, LARIN V S, ZHUKOV A. Stress induced magnetic anisotropy and giant magnetoimpedance in Fe-rich glasscoated magnetic microwires[J]. Journal of Applied Physics, 2003, 94(2): 1115-1118.
[5] ZHUKAVA V, UMNOV P, MOLOKANOV V, et al. Magnetic properties and giant magneto-impedance effect of ductile amorphous microwires without glass coating[J]. Sensor Letters, 2012, 10(3-4): 731-735.
[6] ZHUKOV V, CHURYUKABOVA M, KALOSHKIN S, et al. Effect of annealing on magnetic properties and magnetostriction coefficient of Fe-Ni-based amorphous microwire[J]. Journal of Alloys and Compounds, 2015, 651(5): 718-723.
[7] LIU J S, QIN F X, CHEN D M, et al. Combined current-modulation annealing induced enhancement of giant magnetoimpedance effect of Co-rich amorphous microwires[J]. Journal of Applied Physics, 2014, 115(17): 3261-3263.
[8] TLAAT A, ZHUKOVA V, IPATOV M, et al. Optimization of the giant magnetoimpedance effect of finemet-type microwires through the nanocrystallization[J]. Journal of Applied Physics, 2014, 115(17): 3131-3133.
[9] ZENG L, CHEN G, GONG F F, et al. Magneto-impedance effect in the tensile stress-annealed Fe-based nanocrystalline alloy[J]. Journal of Magnetism and Magnetic Materials, 2000, 208(1-2): 74-77.
[10] TAYLOR G F. A method of drawing metallic filaments and a discussion of their properties and uses[J]. Physical Review, 1924, 23(5): 655-660.
[11] 严密, 彭晓领. 磁学基础与磁性材料[M]. 杭州: 浙江大学出版社, 2006.
[12] TALAAT A, IPATOV M, ZHUKOVA V, et al. Giant magneto-impedance effect in thin Finemet nanocrystalline microwires[J]. Physica Status Solidi C, 2014, 11(5-6): 1120-1124.
[13] PANIN L V, MOHRI K. Magneto-impedance effect in amorphous wires[J]. Applied Physics Letters, 1994, 65(9): 1189-1191.
[14] 李欣, 张清, 阮建中, 等. 不同长度敏感元件的两种巨磁阻抗传感器传感性能研究[J]. 传感技术学报, 2008, 21(7): 1147-1150.