地理学

基于聚类关联规则的公交扒窃犯罪时空分析

  • 闫密巧 ,
  • 过仲阳 ,
  • 任浙豪
展开
  • 华东师范大学 地理科学学院, 上海 200241
闫密巧,女,硕士研究生,研究方向为数据挖掘

收稿日期: 2016-06-17

  网络出版日期: 2017-05-18

基金资助

国家理科基地科研训练及科研能力提高项目(J1310028)

Spatio-temporal analysis of bus pickpocketing using association rules based on clustering

  • YAN Mi-qiao ,
  • GUO Zhong-yang ,
  • REN Zhe-hao
Expand
  • School of Geography Sciences, East China Normal University, Shanghai 200241, China

Received date: 2016-06-17

  Online published: 2017-05-18

摘要

提出了一种基于聚类的时空关联规则的公交犯罪挖掘算法.针对某市一个区的110报警数据库中的大量业务信息进行分析.首先,通过文本挖掘技术从案情信息中提取时间、地点等信息,并利用高德地图API的地理编码服务和POI搜索功能对提取的地址信息进行地址匹配,提取受害人上下车站点、乘坐公交线路等信息.其次,对提取得到的时空数据进行归并处理.最后,根据案发时段、季节以及是否节假日进行聚类分析,然后在簇内进行时空关联规则分析.这种挖掘方法具有以下特点:①在聚类基础上进行关联规则分析,减少扫描数据库次数,大大缩小数据扫描范围,提高算法效率,更加适合海量犯罪数据的挖掘.②聚类后簇内数据具有相似性,特征更加明显,在此基础上进行关联规则分析产生较小的频繁项集,并且提取出置信度较高的规则.③考虑犯罪行为的时空特性,挖掘过程中同时考虑了案发季节、是否节假日等因素.

本文引用格式

闫密巧 , 过仲阳 , 任浙豪 . 基于聚类关联规则的公交扒窃犯罪时空分析[J]. 华东师范大学学报(自然科学版), 2017 , (3) : 145 -152 . DOI: 10.3969/j.issn.1000-5641.2017.03.016

Abstract

This paper introduced the spatio-temporal association rules based on clustering minging to find out the spatio-temporal crime patterns of bus pickpocketing. It can be carried out through three steps. Firstly, extract time, places and other information from the case information by text extraction. Then, confirm the boarding stations and getting off stations of victims using the geocoding service and POI search capability of Amap API. Divide the bus routes into sections according to the bus stops and merge the crime time into time interval. Thirdly, the analysis of association rules based on clustering is carried out to discover the patterns of bus pickpocketing. The results prove that the proposed mining model has the following characteristics: ①This method can reduce the database scanning times, the candidate item sets amount and improve time efficiency of the searching. ②After clustering, the data in a cluster is similar and the characteristics are more obvious. On this basis, the association rules of high confidence are extracted. ③When the analysis was carried out, the temporal and spatial characteristics of the bus pickpocketing crime were also considered.

参考文献

[1] HERRMANN C. A micro-level spatiotemporal analysis of crime, place & business establishment type [D]. New York: The City University of New York, 2011.
[2] NEWTON A. A study of bus route crime risk in urban areas: the changing environs of a bus journey [J]. Built Environment, 2008, 34(1): 88-103.
[3] NEWTON A D. Crime on public transport: ‘static' and ‘non-static' (moving) crime events [J]. University of Huddersfield, 2004, 5(3): 25-42.
[4] 刘鹏. 大数据背景下的摰燎榔瓟犯罪及打防对策[J]. 山东警察学院学报, 2016, 28(5): 91-98.
[5] 郭玮. 审查逮捕阶段侦查员证言效力及路径选择——以北京市某区检察院"零口供"型公交扒窃类案件为视角[J]. 南都学坛, 2015, (5): 76-79.
[6] 王敏. 公交扒窃罪犯的社会干预机制[J]. 决策与信息旬刊, 2012(5): 28-28.
[7] 胡炜. 公交车上犯罪的原因与预防[J]. 法制与社会, 2013(8): 76-77.
[8] AGRAWAL R, IMIELIŃSKI T, SWAMI A. Mining association rules between sets of items in large databases [J]. ACM SIGMOD Record, 1993, 22(2): 207-216.
[9] HAN J, KAMBER M. 数据挖掘概念与技术[M]. 范明, 孟小峰, 译. 北京: 机械工业出版社, 2001.
[10] 李德仁, 王树良, 史文中,等. 论空间数据挖掘和知识发现[J]. 武汉大学学报(信息科学版), 2001, 26(6): 491-499.
[11] 夏英, 张俊, 王国胤. 时空关联规则挖掘算法及其在ITS中的应用[J]. 计算机科学, 2011, 38(9): 173-176.
[12] 李晶晶. 时空数据挖掘在环境保护中的应用研究[D]. 长沙: 中南大学, 2008.
[13] XUE C J, DONG Q, MA W X. Object-oriented spatial-temporal association rules mining on ocean remote sensing imagery [C]//35th International Symposium on Remote Sensing of Environment (ISRSE35). Beijing, 2013.
[14] MENNIS J, LIU J W. Mining association rules in spatio-temporal data: an analysis of urban socioeconomic and land cover change [J]. Transactions in Gis, 2005, 9(1): 5-17.
[15] 叶文菁, 吴升. 基于加权时空关联规则的公交扒窃犯罪模式识别[J]. 地球信息科学学报, 2014, 16(4): 537-544.
[16] 杨立波. 基于聚类的关联规则挖掘算法[J]. 太原大学学报, 2011, 12(1):113-116.
[17] 袁楠, 金晖, 田玲, 等. 基于聚类和模糊关联规则的中医药对量效分析[J]. 计算机应用研究, 2009, 26(1): 59-61.
[18] SETHI P, ALAGIRISWAMY S. Association rule based similarity measures for the clustering of gene expression data [J]. Open Medical Informatics Journal, 2010, 4(1): 63.
[19] ISAKKI A D P, RAJAGOPALAN S P. Analysis of customer behavior using clustering and association rules [J]. International Journal of Computer Applications, 2012, 43(23): 19-26.
[20] 周梅. 基于聚类的关联规则交叉销售模型研究[J]. 现代商业, 2010, (26): 73.
[21] 石敏. 基于聚类划分的关联规则在Web日志挖掘中的应用研究[D]. 武汉: 武汉理工大学, 2014.
[22] 王慧, 郑涛, 张建岭. 基于聚类的关联规则算法在刑事犯罪行为分析中的应用[J]. 中国人民公安大学学报(自然科学版), 2010, (3): 65-67.
[23] AGRAWAL R, SRIKANT R. Fast algorithms for mining association rules [C]//Proceedings of the Twentieth Internaltional Conference on Very Large Databases. Santiago, 1994.
文章导航

/